A new Authorization Framework for Internet of Things

Ludwig Seitz
ludwig@sics.se
Introduction – Internet of Things

Everything that benefits from Internet connection gets connected

Examples:

Health monitoring
Smart homes
Industrial Control Systems
Introduction – Security Issues

- Devices previously in closed environments become globally accessible
 - e.g. Industrial Control Systems
- Devices can handle very sensitive data
 - e.g. Medical sensors
- Novel business models need new access modes
 - Currently: all or nothing (root access)
 - Needed: e.g. pay-by-use, limited anonymous access
Overview

Scenario:
- Network of devices (sensors, actuators)
 - Little memory, small processor
 - Resource owner controls access
 - Users access resources on device

Our goal:
- Provide fine-grained access control
 - Multiple users with different rights
 - Decisions per user, resource and action
 - Based on dynamically changing parameters
Assumptions and Prerequisites

- Communication Channel: CoAP
 - Lightweight, UDP-based alternative to HTTP
 - Developed by the CORE group at IETF
- Communications security
 - Secure channel or Object security
- Authentication
 - Pre-shared keys or Public Key Infrastructure
Requirements

- Differentiated access control rules for different requesting users
 - Local enforcement of certain conditions (e.g. on device-state, position, time)
- Minimal communication requirements and low computational overhead
- Protect access control information itself
- Dependent on a minimum of other functions
- End-to-end protection of protocol messages
Our Architecture

1. Register devices & configure policies
2. Discover device & request authorization
3. Access device

Device owner

Authorisation Server

Back-end

Resource Directory

User

Device

www.sics.se
Access procedure

1. Access request
2. Evaluate access request (Permit/Deny)
3. If Permit, issue authorization assertion
4. Response with assertion (if Permit)

User → Back-end system → Authorization Server
Assertion format

- Based on XACML and SAML
 - Standards for access control and security assertions (OASIS)
- Subsets of the full standards
 - Reduce processing overhead & libraries on device
- Compact representation in JSON
 - ~ 250 bytes JSON vs ~ 2500 bytes XML
Conclusion

• Authorization framework for IoT
 – Standards-based, but adapted to IoT
• Key components:
 – Authorization Server
 – Assertion format
• Future work:
 – Communications security alternatives
 – Usability for policy administration
Assertion format example

01 {
 "ID": "ID_ffda55f9...097bdd21e6",
 "II": "2013-02-15T10:02:52Z",
 "IS": "AAA-Server",
 "SK": "BvDgLAXSH...0RLhfwS1fue",
 "ST": {
 "OB": {
 "NB": "09:00:00Z",
 "NA": "17:00:00Z"
 },
 "ACT": "GET",
 "RES": "coap://node346/tempSensor"
 }
}

Assertion Identifier
Issue instant
Issuer
Subject (key)
Statement
Obligation
Not before
Not after
Action
Resource
Securing communication

- **DTLS**
 - TLS over UDP
 - Problem: session establishment time

- **Object security**
 - Based on JOSE standard drafts at IETF
 - Problem: Key establishment
Authentication

- Pre-shared keys between Device and Authorization Server
 - High setup cost
- Public Key Infrastructure
 - Heavyweight management, e.g. distributing CRLs, installing root certs
- SPKI-like approach
 - Public keys function as identifiers