Spark: Making Big Data Interactive & Real-Time

Matei Zaharia
UC Berkeley / MIT

www.spark-project.org
What is Spark?

Fast and expressive cluster computing system compatible with Apache Hadoop

Improves efficiency through:
» General execution graphs
» In-memory storage

Improves usability through:
» Rich APIs in Scala, Java, Python
» Interactive shell

Up to 10× faster on disk, 100× in memory
2-5× less code
Project History

Spark started in 2009, open sourced 2010

In use at Yahoo!, Intel, Adobe, Quantifind, Conviva, Ooyala, Bizo and others

24 companies now contributing code

spark.incubator.apache.org
A Growing Stack

Part of the Berkeley Data Analytics Stack (BDAS) project to build an open source next-gen analytics system.
This Talk

Spark introduction & use cases

Shark: SQL on Spark

Spark Streaming

The power of unification
Why a New Programming Model?

MapReduce greatly simplified big data analysis

But as soon as it got popular, users wanted more:
 » More complex, multi-pass analytics (e.g. ML, graph)
 » More interactive ad-hoc queries
 » More real-time stream processing

All 3 need faster data sharing across parallel jobs
Data Sharing in MapReduce

Input → HDFS read → iter. 1 → HDFS write → iter. 2 → HDFS read → iter. 3 → HDFS write → ... → result 1 → result 2 → result 3

Slow due to replication, serialization, and disk IO
Data Sharing in Spark

Input

iter. 1

iter. 2

...

Distributed memory

query 1

query 2

query 3

...

10-100× faster than network and disk
Spark Programming Model

Key idea: resilient distributed datasets (RDDs)
 » Distributed collections of objects that can be cached in memory across cluster
 » Manipulated through parallel operators
 » Automatically recomputed on failure

Programming interface
 » Functional APIs in Scala, Java, Python
 » Interactive use from Scala & Python shells
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
messages = errors.map(_.split(\'\t\')(2))
messages.cache()
```

```
messages.filter(_.contains("foo")).count
messages.filter(_.contains("bar")).count
...```

**Result:** scaled to 1 TB data in 5-7 sec (vs 170 sec for on-disk data)
Fault Tolerance

RDDs track *lineage* information to rebuild on failure

```scala
file.map(rec => (rec.type, 1))
 .reduceByKey(_ + _)
 .filter((type, count) => count > 10)
```
Fault Tolerance

RDDs track *lineage* information to rebuild on failure

```scala
file.map(rec => (rec.type, 1))
 .reduceByKey(_ + _)
 .filter((type, count) => count > 10)
```
Example: Logistic Regression

Goal: find best line separating two sets of points
Example: Logistic Regression

```scala
def logisticRegression(iterations: Int, data: Array[Array[Double]]) = {
 var w = Vector.random(data(0).length)
 for (i <- 1 to iterations) {
 val gradient = data.map(p =>
 (1 / (1 + exp(-p(1) * w)) - 1) * p(1) * p(0)
).reduce(_ + _)
 w -= gradient
 }
 w
}
```

```
val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = data.map(p =>
 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
 w -= gradient
}

println("Final w: "+ w)
```
Logistic Regression Performance

Running Time (s) vs. Number of Iterations

- **Hadoop**: 110 s/iteration
- **Spark**: first iteration 80 s, further iterations 1 s
Supported Operators

map  
filter  
groupBy  
sort  
union  
join  
leftOuterJoin  
rightOuterJoin  
reduce  
count  
fold  
reduceByKey  
groupByKey  
cogroup  
cross  
zip  
sample  
take  
first  
partitionBy  
mapWith  
pipe  
save  
...
Spark in Python and Java

// Python:
lines = sc.textFile(...) 
lines.filter(lambda x: "ERROR" in x).count()

// Java:
JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {
  Boolean call(String s) {
    return s.contains("error");
  }
}).count();
User Community

1000+ meetup members
80+ contributors
24 companies contributing
Generality of RDDs

RDD model was general enough to let us implement several previous models:

» MapReduce, Dryad
» Pregel [200 LOC]
» Iterative MapReduce [200 LOC]
» GraphLab [600 LOC]
» SQL (Shark) [6000 LOC]

Allows apps to *intermix* these models
This Talk

Spark introduction & use cases

Shark: SQL over Spark

Spark Streaming

The power of unification
MPP databases 10-100x faster than MapReduce
Why Databases Were Faster

Data representation
  » Schema-aware, column-oriented, etc
  » Compare with MapReduce’s “record” model

Indexing

Lack of mid-query fault tolerance
  » MR’s “pull” model costly compared to “push”
Shark

Provides fast SQL queries on a MapReduce-like engine (Spark), and retains full fault tolerance.

- 1.7 TB data
- 100 nodes

10-100x faster than Hive
Within 2-3x of Amazon Redshift

1.7 TB data
100 nodes
But What About…

Data representation?
  » Can do it *inside* MapReduce records
  » In Shark, a “record” is a set of rows
  » Implemented columnar storage within these

Indexing?
  » Can still read indices in MR

Mid-query fault tolerance?
  » We have it, but we still perform OK
  » Also enables elasticity, straggler mitigation
Implementation

Port of Apache Hive
  » Supports unmodified Hive data and warehouses

Efficient mixing with Spark code (e.g. machine learning functions) in the same system

```scala
val users = sql2rdd("SELECT * FROM user u
 JOIN comment c ON c.uid=u.uid")

val features = users.mapRows { row =>
 new Vector(extractFeature1(row.getInt("age")),
 extractFeature2(row.getStr("country")),
 ...
)}

val trainedVector = logRegress(features.cache())
```
This Talk

Spark introduction & use cases

Shark: SQL over Spark

Spark Streaming

The power of unification
Motivation

Many important apps must process large data streams at second-scale latencies
  » Site statistics, intrusion detection, online ML

To scale these apps to 100s of nodes, require:
  » **Fault-tolerance**: both for crashes and stragglers
  » **Efficiency**: low cost beyond base processing

Current steaming systems don’t meet both goals
Traditional Streaming Systems

Continuous operator model

» Each node has mutable state
» For each record, update state & send new records
Traditional Streaming Systems

Fault tolerance via *replication* or *upstream backup*:
Traditional Streaming Systems

Fault tolerance via *replication* or *upstream backup*:

- **Fast recovery, but 2x hardware cost**

- **Only need 1 standby, but slow to recover**
Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

Neither approach can handle stragglers
Observation

Batch processing models, like MapReduce, provide fault tolerance efficiently
  » Divide job into deterministic tasks
  » Rerun failed/slow tasks in parallel on other nodes

Idea: run streaming computations as a series of small, deterministic batch jobs
  » Same recovery schemes at much smaller timescale
  » To make latency low, store state in RDDs
Discretized Stream Processing

$t = 1$: input

$t = 2$: input

Batch operation

Immutable dataset (output or state); stored reliably

Immutable dataset (stored in memory as RDD)
Parallel Fault Recovery

Checkpoint state RDDs periodically

If a node fails or straggles, rebuild lost dataset partitions in parallel on other nodes

Faster recovery than upstream backup, without the cost of replication
How Fast Can It Go?

Can process over 60M records/s (6 GB/s) on 100 nodes at sub-second latency

Maximum throughput for latency under 1 sec
Comparison with Storm

Storm limited to 100K records/s/node
Commercial systems report O(500K) total
How Fast Can It Recover?

Recovers from faults/stragglers within 1 second

Sliding WordCount on 20 nodes with 10s checkpoint interval

Fault happens
Programming Interface

Simple functional API

```javascript
views = readStream("http:...", "1s")
ones = views.map(ev => (ev.url, 1))
counts = ones.runningReduce(_ + _)
```

Interoperates with RDDs

```javascript
// Join stream with static RDD
counts.join(historicCounts).map(...)

// Ad-hoc queries on stream state
counts.slice("21:00","21:05").topK(10)
```
This Talk

Spark introduction & use cases

Shark: SQL over Spark

Spark Streaming

The power of unification
One of the things that makes Spark unique is unification of multiple programming models »SQL, graphs, streaming, etc on the same engine

This had powerful benefits:
» For the engine
» For users
Engine Perspective

Let’s compare Spark with leading frameworks in

» Code size
» Performance
Code Size

- Hadoop MapReduce
- Impala (SQL)
- Storm (Streaming)
- Giraph (Graph)
- Spark

non-test, non-example source lines
Code Size

- Hadoop MapReduce
- Impala (SQL)
- Storm (Streaming)
- Giraph (Graph)
- Spark

Non-test, non-example source lines
Code Size

- Hadoop MapReduce
- Impala (SQL)
- Storm (Streaming)
- Giraph (Graph)
- Spark

non-test, non-example source lines
Code Size

non-test, non-example source lines
Performance

Response Time (s)

- Impala (disk)
- Impala (mem)
- Redshift (disk)
- Shark (mem)

Throughput (MB/s/node)

- Storm
- Spark

Response Time (min)

- Hadoop
- Giraph
- GraphX
User Perspective

Unified engine means that:

1. Apps can easily **compose** models (e.g. run a SQL query then PageRank on the result)

2. Composition is **fast** (no writing to disk)

3. All models get **Spark shell** for free (e.g. use it to inspect your streams’ state, or your graph)
Long-Term Direction

As big data apps grow in complexity, combining processing models is essential
  » E.g. run SQL query then machine learning on result

Data sharing between models is often slower than the computations themselves
  » E.g. HDFS write versus in-memory iteration

Thus, unified engines increasingly important
Getting Started

Visit [spark-project.org](http://spark-project.org) for videos, tutorials, and hands-on exercises

Easy to run in local mode, private clusters, EC2

Compatible with any Hadoop storage system

Online training camp: [ampcamp.berkeley.edu](http://ampcamp.berkeley.edu)
Conclusion

Big data analytics is evolving to include:

» More **complex** analytics (e.g. machine learning)
» More **interactive** ad-hoc queries
» More **real-time** stream processing

Spark is a platform that **unifies** these models, enabling sophisticated apps

More info: spark-project.org
Backup Slides
Behavior with Not Enough RAM

**Iteration time (s)**

- Cache disabled: 68.8
- 25%: 58.1
- 50%: 40.7
- 75%: 29.7
- Fully cached: 11.5

**% of working set in memory**

- Cache disabled
- 25%
- 50%
- 75%
- Fully cached