Software. Hardware. Complete.
M7: Next Generation Oracle Processor

SICS Software Week/Multicore Day 2014

Zoran Radovic
Senior Principal Engineer
Oracle SPARC Architecture
October 8, 2014
Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
SPARC @ Oracle

5 Processors in 4 Years

SPARC T3
- 16 S2 cores
- 4MB L3$
- 40 nm technology
- 1.65 GHz

SPARC T4
- 8 S3 Cores
- 4MB L3$
- 40nm Technology
- 3.0 GHz

SPARC T5
- 16 S3 Cores
- 8MB L3$
- 28nm Technology
- 3.6 GHz

SPARC M5
- 6 S3 Cores
- 48MB L3 $
- 28nm Technology
- 3.6 GHz

SPARC M6
- 12 S3 Cores
- 48MB L3$
- 28nm Technology
- 3.6 GHz
Oracle’s SPARC Strategy

Extreme Performance
- Best Performance and Price-Performance in the Industry
- Deliver Services with Faster Speeds, and Lower the Costs for Existing Services

Computing Efficiency
- Flexible Virtualization, Designed for Availability
- Enable Higher Utilization of Capital Assets, and Reduce Risks to Availability of Data

Optimized for Oracle Software
- Hardware and Software Engineered, Tested, and Supported Together
- Deploy Technology Faster, with Less Risk and Lower Costs

http://blog.oracle.com/bestperf
Announcing

M7 Microprocessor
Software in Silicon
M7 Processor

- 32 SPARC Cores
 - Fourth Generation CMT Core (S4)
 - Dynamically Threaded, 1 to 8 Threads Per Core

- New Cache Organizations
 - Shared Level 2 Data and Instruction Caches
 - 64MB Shared & Partitioned Level 3 Cache

- DDR4 DRAM
 - Up to 2TB Physical Memory per Processor
 - 2X-3X Memory Bandwidth over Prior Generations

- PCIe Gen3 Support

- SMP Scalability from 1 to 32 Processors

- Application Acceleration
 - Real-time Application Data Integrity
 - Concurrent Memory Migration and VA Masking
 - DB Query Offload Engines

- Coherent Memory Clusters

- Technology: 20nm, 13ML
M7 Core (S4)

- Dynamically Threaded, 1 to 8 Threads
- Increased Frequency at Same Pipeline Depths
- Dual-Issue, OOO Execution Core
 - 2 ALU’s, 1 LSU, 1 FGU, 1 BRU, 1 SPU
 - 40 Entry Pick Queue
 - 64 Entry FA I-TLB, 128 Entry FA D-TLB
 - Cryptographic Performance Improvements
 - 54bit VA, 50bit RA/PA, 4X Addressing Increase

- Core Recovery
- Fine-grain Power Estimator
- Live Migration Performance Improvements
- Application Acceleration Support
 - Application Data Integrity
 - Virtual Address Masking
 - User-Level Synchronization Instructions
M7 Core Cluster

- 4 SPARC Cores Per Cluster
- New L2$ Architecture
 - 1.5X Larger at Same Cycle Count Latency as Prior Generations
 - 2X Bandwidth per Core, >1TB/s Per Core Cluster, >8TB/s per Chip
- 256KB L2-I$
 - Shared by All Cores in Core Cluster
 - 4-way SA, 64B Lines, >500GB/s Throughput
 - 4 Independent Core Interfaces @ >128GB/s Each
- 256KB Writeback L2-D$
 - Each L2-D$ Shared by 2 Cores (Core-pair)
 - 8-way SA, 64B Lines, >500GB/s Throughput per L2-D$
 - 2 Independent Core Interfaces @ >128GB/s per L2-D$
- Core-pair Dynamic Performance Optimizations
 - Doubles Core Execution Bandwidth at Prior Generation Thread Count to Maximize Per-Thread Performance
 - Utilize 8 Threads Per Core to Maximize Core Throughput
M7 Process Group & Virtualization Affinity

- Solaris Process Group Hierarchy
 - Thread Scheduling Level Corresponding to Core Cluster and Local L3$ Partition
 - Thread Load Balance Across L3$ Partitions
 - Thread Reschedule Affinity
 - Co-location of Threads Sharing Data

- Oracle Virtualization Manager (OVM)
 - Process Group Provisioning Applied to Logical Partitions
 - Minimize L3$ Thrashing Between Virtual Machine Instances, Improve QoS
M7 Fine-grain Power Management

• On-die Power Estimator Per Core
 • Generates Dynamic Power Estimates By Tracking Internal Core Activities
 • Estimates Updated at 250 Nanosecond Intervals

• On-die Power Controller
 • Estimates Total Power of Cores and Caches on a Quadrant Basis (2 Core Clusters + 2 L3$ Partitions)
 • Accurate to within a Few Percent of Measured Power
 • Individually Adjusts Voltage and/or Frequency within Each Quadrant Based on Software Defined Policies

• Performance @ Power Optimizations
 • Highly Responsive to Workload Temporal Dynamics
 • Can Account for Workload Non-uniformity Between Quadrants

• Quadrants May be Individually Power Gated
M7 Level 3 Cache and On-Chip Network

- **64MB Shared & Partitioned L3$:**
 - 8MB Local Partitions, Each 8-way SA
 - >25% Reduction in Local L3$ Cycle Latency Compared to Prior Generation (M6)
 - >1.6TB/s L3$ Bandwidth per Chip, 2.5x (T5) to 5X (M6) Over Previous Generations
 - Cache Lines May be Replicated or Migrated Between L3$ Partitions
 - HW Accelerators May Directly Allocate into Target L3$ Partitions

- **On-Chip Network (OCN):**
 - Consists of Request (Rings), Response (Pt-Pt) and Data (Mesh) Interconnects
 - 0.5TB/s Bisection Data Bandwidth
M7 Memory and I/O

- **4 DDR4 Memory Controllers**
 - 16 DDR4-2133/2400/2667 Channels
 - Very Large Memory, Up to 2TB per Processor
 - 160GB/s (DDR4-2133) Measured Memory Bandwidth (2X to 3X Previous Generations, T5 and M6)
 - DIMM Retirement Without System Stoppage

- **Memory Links to Buffer Chips**
 - 12.8Gbps/14.4Gbps/16Gbps Link Rates
 - Lane Failover with Full CRC Protection

- **Speculative Memory Read**
 - Reduces Local Memory Latency by Prefetching on Local L3$ Partition Miss
 - Dynamic per Request, Based on History (Data, Instruction) and Threshold Settings

- **PCIe Gen3**
 - 4 Internal Links Supporting >75GB/s
 - >2X Previous Generations, T5 and M6
M7 Processor Performance

- Memory BW
- Int Throughput
- OLTP
- Java
- ERP
- FP Throughput

Copyright © 2014 Oracle and/or its affiliates. All rights reserved.
Feature #1:

Application Data Integrity (ADI)
Memory Corruption Detection, Software Tools

• Purify, Valgrind, Parallel Inspector, ...
 - Large run-time overheads; 20-160X
 - Limited platform support for huge applications and non-user space

• Dangling/Stale pointers are especially costly to detect
 - Silent memory corruption (reading/overwriting wrong data)
 - Need to compare pointer signature on each memory access
 - Test coverage issues

• Oracle C/C++ software engineers are using numerous state-of-the-art tools, in addition to in-house techniques

• Application Data Integrity (ADI) targets production support
 - The protection can always be activated
M7 Application Data Integrity

<table>
<thead>
<tr>
<th>M7 Memory & Caches</th>
</tr>
</thead>
<tbody>
<tr>
<td>version 64Bytes</td>
</tr>
</tbody>
</table>

M7 Core Pipeline Execution

- Real-time Data Integrity Checking in Test & Production Environments
- Version Metadata Associated with 64Byte Aligned Memory Data
- Metadata Stored in Memory, Maintained Throughout the Cache Hierarchy and All Interconnects
- Memory Version Metadata Checked Against Reference Version by Core Load/Store Units
- HW Implementation, Very Low Overhead

- Enables Applications to Inspect Faulting References, Diagnose and Take Appropriate Recovery Actions

Safeguards Against Invalid/Stale References and Buffer Overruns for Solaris and DB Clients
Software in Silicon: Protects Applications

Security in the Cloud

- Hardware based memory protection
- Stops malicious programs from accessing other application memory
- Never been done before
 - Can be always on: Hardware approach has negligible performance impact
- Results in more secure and higher available applications
- Greatly speeds software development
Software in Silicon: Protects Applications

Security Security Security in the Cloud

• Hardware based memory protection

• Stops malicious applications from accessing other application memory

• Never been done before
 - Can be always on: Hardware approach has negligible performance impact

• Results in more secure and higher available applications

• Greatly speeds software development
21st Century Security: Application Data Integrity in the Cloud
Hard Wired Protection Against All Forms of Data Intrusion

- SPARC M7’s Application Data Integrity stops memory corruption
 - Memory pointer color must match content color or access is denied
- Can be used in optimized production code without impact on performance
- Allows increased speed of application development
- Helps stop malicious code from accessing secure data
Oracle says Sparc M7 chip will put an end to Heartbleed

Oracle says Sparc M7 chip will put an end to Heartbleed

No more unlimited memory requests

By Madeline Bennett
Wed Oct 01 2014, 20:32

SAN FRANCISCO: ORACLE HAS SAID its upcoming M7 chip will be able to prevent attacks like the Heartbleed bug by building security into the silicon.

Oracle flashed out more details of its upcoming M7 chip and its associated Software in Silicon technology at its Openworld show in San Francisco. The silicon will include Application Data Integrity (ADI) technology, aimed at securing applications and databases at the memory level in the hardware, according to Oracle EVP John Fowler.
Feature #2:

Fine-grain Memory Migration and Virtual Address Masking
M7 Concurrent Fine-grain Memory Migration

Old Memory Regions

• Hardware Support For Fine Grain Access Control
 • Applicable to Fine-grain Objects and Large Memory Pages
 • Bypasses Operating System Page Protection Overheads
 • Scales with Threads and Memory Bandwidth

New Memory Region

• Deterministic Memory Access Conflict Resolution
 • Memory Metadata of Relocating Objects Are Marked for Migration
 • User Level Trap on Detection of Memory Reference with Migrating Version

Enables Concurrent and Continuous Operation
M7 Virtual Address (VA) Masking

- Allow Programs to Embed Metadata in Upper Unused Bits of Virtual Address Pointers
 - Applications Using 64-bit Pointers Can Set Aside 8, 16, 24 or 32 Bits
 - Addressing Hardware Ignores Metadata
- Enables Managed Runtimes (e.g. JVM's) to Embed Metadata for Tracking Object Information
 - Caches Object State Table Information into Object Pointer (Pointer Coloring)
 - Eliminates De-reference and Memory Load from Critical Path
Feature #3:

Database In-Memory Accelerators
Oracle Database In-Memory Goals

- Real Time Analytics
- Accelerate Mixed Workload OLTP
- No Changes to Applications
- Trivial to Implement

100x
Row Format Databases vs. Column Format Databases

- **Transactions** run faster on row format
 - Example: Query or Insert a sales order
 - Fast processing few rows, many columns

- **Analytics** run faster on column format
 - Example: Report on sales totals by region
 - Fast accessing few columns, many rows
Oracle 12c: Dual Format Database

- BOTH row and column formats for same table
- Simultaneously active and transactionally consistent
- Analytics & reporting use new in-memory Column format
- OLTP uses proven row format
M7 Database In-Memory Query Accelerator

- Hardware Accelerator Optimized for Oracle Database In-Memory
 - Task Level Accelerator that Operates on In-Memory Columnar Vectors
 - Operates on Decompressed and Compressed Columnar Formats

- Query Engine Functions
 - In-Memory Format Conversions
 - Value and Range Comparisons
 - Set Membership Lookups

- Fused Decompression + Query Functions Further Reduce Task Overhead, Core Processing Cycles and Memory Bandwidth per Query
M7 Query Accelerator Engine

- Eight In-Silicon Offload Engines
- Cores/Threads Operate Synchronous or Asynchronous to Offload Engines
- User Level Synchronization Through Shared Memory
- High Performance at Low Power
Feature #4:
User-level Accelerator Synchronization
M7 Accelerator Fine-grain Synchronization

• Core Thread Initiates a Query Plan Task to Offload Engine

• User-Level LDMONITOR, MWAIT
 • Halts Hardware Thread for Specified Duration
 • Thread is Re-activated Once Duration Expires or Monitored Memory Location is Updated

• Offload Engine Completion
 • Results Written Back to Memory or Target L3$ Partition
 • Completion Status Posted to Monitored Memory Location
 • MWAIT Detection Hardware Resumes Core Thread Execution
M7 Query Offload Performance Example

- SPARC T5, M7 & Oracle Database In-Memory
- Single Stream Decompression Performance
 - Decompression Stage of Query Acceleration
 - Unaligned Bit-Packed Columnar Formats
 - 1 of 32 Query Engine Pipelines
- M7 Hardware Accelerator Fuses Decompression Output with Filtering Operations
 - Further Accelerates the “WHERE” Clause in SQL Query
 - In-line Predicate Evaluation Preserves Memory Bandwidth
- Business Analytics Performed at System Memory Bandwidth
M7 SMP Scalability

• Fully Connected 8 Processor SMP
 - Up to 256 Cores, 2K Threads, 16TB Memory
 - >1TB/s Bisection Payload Bandwidth

• Fully Connected 2/4 Processor SMP Utilizing Link Trunking

• Directory-based Coherence

• 16Gbps to 18Gbps Link Rates

• Link Level Dynamic Congestion Avoidance
 - Alternate Path Data Routing
 - Based on Destination Queue Utilization

• Link Level RAS
 - Auto Frame Retry
 - Auto Link Retrain
 - Single Lane Failover
M7 SMP Scalability

- SMP Scalability to 32 Processors
 - Up to 1K Cores, 8K Threads
 - Up to 64TB Memory

- 64 Port Switch ASIC's
 - Divided into 2 Switch Groups of 6 Switch ASICs
 - 5.2TB/s Payload Bandwidth
 - 4X Bisection Payload Bandwidth over M6

- Physical Domains of 4 Processors Each
 - Fully Connected Local Topology
 - Dynamically Combine Processor Domains

- Fully Connected Switch Topology
 - 2 Links Connecting Every Processor and Switch
 - Coherence Directory Distributed Among Switches
 - Latency Reduction over M6 Generation

- SMP Interconnect RAS
 - Link Auto Retry & Retrain, Single Lane Failover
 - Link Level Multipathing
 - Operational with 5 of 6 ASIC's per Switch Group
Feature #5:

Coherent Memory Clusters
Highly Reliable and Secure Shared Memory Clustering Technology
- Access Remote Node Memory Using Load/Store/Atomics, Relaxed Ordering
- Integrated User Level Messaging and RDMA

Cacheable Memory Segments
- Remote Segments Cached in Local Node Memory & Caches at 64 Byte Granularity
- Load-Hit Latency Accessing Remote Segments Same as Local Node Memory and Caches
- Committed Stores to Remote Segments Update Home Node and Invalidate Remote Nodes

Non-Cacheable Memory Segments
- Always Access Remote Node Memory

Cluster-wide Security
- 64-bit Access Key Per Remote Request
- Memory Version Checking Across Cluster
M7 Coherent Memory Clusters

- Up to 64 Processor Cluster
 - Combinations of 2P, 4P or 8P Server Nodes
 - Leverages M7 SMP HW and Interconnect

- Coherent Memory Cluster Protocol
 - Application Committed Stores Remain Consistent at the Home Node in Face of Requester Failure
 - 2-Party Dialogs for Failure Isolation

- 1.3TB/s Bisection Payload Bandwidth

- Self Redundant Cluster Switch
 - 64 Port Switch ASIC's
 - 6 Switching Paths Between Each Processor Pair, Divided in 2 Groups
 - Fault Tolerant Design Allowing Operation with a Single Switching Path per Group
 - Automatic Link and Switch Failover Without Involving Application Software
M7 Summary

<table>
<thead>
<tr>
<th>Extreme Performance</th>
<th>Computing Efficiency</th>
<th>Optimized for Oracle Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant Increase in Processor Performance</td>
<td>Increased Virtualization Density</td>
<td>Improved Security and Reliability via Real-time Application Data Integrity</td>
</tr>
<tr>
<td>Further Increase Core and Thread Performance</td>
<td>Low Latency Application Migration</td>
<td>Concurrent Object Migration and Pointer Coloring</td>
</tr>
<tr>
<td>Increased Bandwidths Across Caches, Memory, Interconnects and I/O</td>
<td>Flexible Logical and Physical Partitioning</td>
<td>Database In-Memory Columnar Decompression, Query Offload and Coherent Memory Clusters</td>
</tr>
<tr>
<td>Very Large Memory</td>
<td>Fine-grain Power Management</td>
<td></td>
</tr>
</tbody>
</table>

Significant Increase in Processor Performance

Further Increase Core and Thread Performance

Increased Bandwidths Across Caches, Memory, Interconnects and I/O

Very Large Memory

Increased Virtualization Density

Low Latency Application Migration

Flexible Logical and Physical Partitioning

Fine-grain Power Management

Improved Security and Reliability via Real-time Application Data Integrity

Concurrent Object Migration and Pointer Coloring

Database In-Memory Columnar Decompression, Query Offload and Coherent Memory Clusters