Blockstack, a New Internet for Decentralized Apps

Muneeb Ali
The New Internet
Problems with the traditional internet
End-to-end design principle for the Internet.

1981 Saltzer, Reed, and Clark paper
End-to-end Design
Problem: Trusting DNS
In 2010, an ISP in Chile started using DNS info from Chinese (Netnod) servers.
Problem: Trusting PKI
Problem: Trusting PKI
End-to-end design principle for the Internet.
Trust-to-trust

End-to-end design principle for the Internet.

*2002-2011 Clark and Blumenthal
Trust-to-Trust Design
Problem #1: DNS & PKI are not in user trust zones
Problem: Trusting cloud services
Problems with the traditional internet

Problem #1: DNS & PKI are not in user trust zones
Problem #2: User data and apps are not in user trust zones

#1: Decentralized DNS & PKI
#2: Decentralized storage & discovery
Background on Blockchains
— It’s a file!
— Append-only global log
— Every node on the network has a consistent copy
— Private-public key pairs
— Bitcoin address deterministic from public key
— Example:

Priv: 4c542a0725fa39ce6a120b76a5c9f2c7627ba8b92b61e43f3e9da581ebe27636

Pub: 040a62c54339708998fec301ef0cf8c16a01066227b4a2f686a53bfa49473ab25abdaa48da0f36b8474d5a2aceb6b7cc39c405e98040536729694168cacf25ab92

Bitcoin address: 1CnrAAXA743VnVbW5LZtFrZiaZpXHUYKzg

How Blockchains Work
Bitcoin’s P2P Network
How Blockchains Work

Prev. block-hash → Meta-data → Transactions → SHA256

Block n → Nonce (solution) → Resulting hash → Block n+1 → Nonce

Block n+1 (in-progress) → Resulting hash → Block n+2

Nonce: 000000000000000000ec9897b4a82c526d8b7f93a0fa8f02fcc1dc5e90ae6c77
Limitations of Blockchains

1. Limited data storage & bandwidth
2. Hard to introduce new features
3. Slow writes
4. The endless ledger problem
Blockchain DNS + PKI
Zooko’s Triangle

— Long hash is secure & decentralized e.g., 1Hdsfd34fDdgeTe…
— Twitter handle is human-meaningful & secure e.g., @muneeb

Blockchains can give all three! (e.g., Namecoin)
Naming System on a Blockchain:

Register hash(name)
Update name
— Namecoin, 2011
— Blockchain Name System (BNS), 2014
— Ethereum Name Service (ENS), 2017
werner.id

Owner 1KRca8gGiCITNGR65iXMPQ6d5fssDdN3ZF

Werner Vogels
CTO @ Amazon
Seattle, WA

Summary
Summary

<table>
<thead>
<tr>
<th></th>
<th>Value Hash</th>
<th>First Registered</th>
<th>Preordered</th>
<th>Importer</th>
<th>Import Txn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Hash</td>
<td>3dafd5f42798df3045cd2eb70a71cccf8...</td>
<td></td>
<td>374132</td>
<td>16frc3qZU7D1pWkyL6ZYwPX5UVnWc82V</td>
<td>76a9143e2b5fdd12db7580fb4d3434b31d4fe9124bd9f088ac</td>
</tr>
<tr>
<td>Expires</td>
<td>489247</td>
<td></td>
<td>374132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last Renewed</td>
<td>374132</td>
<td></td>
<td>374132</td>
<td>16frc3qZU7D1pWkyL6ZYwPX5UVnWc82V</td>
<td>76a9143e2b5fdd12db7580fb4d3434b31d4fe9124bd9f088ac</td>
</tr>
<tr>
<td>Revoked</td>
<td>false</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zone File

```json
{"avatar":{"url":"https://s3.amazonaws.com/kd4/werner"},"bio":"CTO @ Amazon","bitcoin":{},"cover":{"url":"https://s3.amazonaws.com/dx3/werner"},"fac..."}
```
BLOCK #407089	NAME_UPDATE
BLOCK #407080	NAME_REGISTRATION
BLOCK #407074	NAME_PREORDER
Lessons from a production deployment
Production system on Namecoin:

— Used u/ namespace
— Live between March 2014 and August 2015
— 33,000 registrations
— Over 200,000 transactions
Weekly Distribution (7/27 – 8/30)

Daily Distribution (8/24 – 8/30)
Namecoin Experience

— Discovered and reported the Namecoin 51% attack vector.
— First analysis of Namecoin's network reliability (production data).
— First report on selfish mining.

See USENIX ATC’16 paper for details
Blockstack Architecture
“Security Box”

Follow David Clark’s trust-to-trust principle
Blockstack

Layered Architecture
Blockstack

Layered Architecture

name DB (local)

Zone file hash	Zone file

URI's in zone files point to stored data

Discovery Layer

Domain name	Public key	Zone file hash

Virtualchain Layer

Transactions are parsed as updates to the name DB

Blockchain Layer

n n+1 n+2 n+3 n+4
Example Zone File:

$ORIGIN werner.id
$TTL 3600
_http._tcp URI 10 1 http://54.231.237.47/werner.id
Secure Internet

Can ask for consensus hash from friends
Virtualchains
Virtualchains

Virtualchain

Blockchain

op_code, hash

b_{n-3}

b_{n-2}

b_{n-1}

b_n

op_code, hash

op_code, hash

op_code, hash

op_code, hash
Virtualchains: Migration

Blockchain A

Blockchain B
Blockchain Name System (BNS)
DNS vs. BNS

DNS Core Infrastructure

- DNS Root Servers
- TLD Servers .com
- TLD Servers .edu
- Authorative Server

Local DNS Server (cache)

End-user

Numbers (1-8) indicate the sequence of steps in the DNS query process.
DNS vs. BNS

DNS Core Infrastructure

- DNS Root Servers
- TLD Servers (.com)
- TLD Servers (.edu)
- Authoritative Server

DNS vs. BNS

BNS Decentralized Infrastructure

- Root Blockchain
- TLD Blockchain (.id)
- TLD Blockchain (.app)

Local DNS Server (cache)

- 1: End-user
- 2: Peer Network
- 3: Local BNS Server (cache)
- 4: Peer Network

Sync

Trust Zone
Scalability: Multiple-blockchains

- Global Naming (TLDs)
- Blockchain Driver
 - Bitcoin
 - Ethereum
 - Hyperledger
Scalability: Subdomains

— Cryptographic commit of subdomains
— Use muneeb@microsoft.site instead of muneeb.id
Peer Networks & Storage
Peer Network: Atlas

— Unstructured
— Full replication
— Targets a subset of the problem space
Decentralized Storage

- Dropbox
- Amazon S3
- Google Drive
- FreeNAS Server

Peer Network

- lookup(hash)
- lookup(URI)

Peer Node (full index)

Block N-5
Block N-4
Block N-3
Block N-2
Block N-1
Block N

(name, hash)

Storage Layer

Discovery Layer

Virtualchain Layer

(encrypted data)
Solutions for Blockchain Limitations

0) Security issues —> Need most secure blockchain (migrate)
1) Storage limitations (blockchain bloat) —> Unlimited data
2) Introducing new features (hard fork) —> Virtualchain
3) Slow writes —> Get operations off blockchain path
4) Endless ledger problem —> Fast bootstrapping
Applications and Current Impact
Blockstack Todo

Sign In With Blockstack
$ blockstack lookup fredwilson.id

You should get a response like this:

```
{
    "data_record": {
        "name": "Fred Wilson",
        "bio": "I am a VC",
        "website": "http://avc.com"
    }
}
```
Storage Performance

- Mostly network bound
 (~5% overhead in filesize)

- 2 secs CPU for 100MB file

- Can give comparable performance to cloud storage
Organizations building on Blockstack range from startups to academic institutions to large enterprises.

- OpenBazaar
- Microsoft
- OpenCloud

Rushwallet

Tor (pipeline)
Decentralized Apps & App Fund

— $25 million fund to build decentralized apps

Casa Ongaku Ryoho OpenBazaar
Afia Guild
There are developer meetups around the world

7,153 members
24 Meetups
plus open-source contributors and 7000+ community members
Blockstack Token
Thank you

More Info:
Website: blockstack.org
Code: github.com/blockstack

Twitter: @muneeb