From Conventional To Adaptable Manufacturing Paradigms: A Systems Perspective

Afifa Rahatulain
afifa.rahatulain@senseair.se

Harold ‘Bud’ Lawson
bud@lawson.se

Presentation Overview

- Background
- Motivation
- Case Study
- Future Work
- Conclusions
Background

Issues in Industry
- Global competition
- Unpredictable market conditions
- Diverse customer demands / mass customization
- High Investment costs leading to outsourcing

Major challenges
- Shorter lead times
- Reduction in downtimes
- Quick response to changes
- Adaption to market fluctuations
- Low investment costs
- Sustainable systems

Need for a change in conventional manufacturing approach!
Before embracing new production paradigms:

- Identification of existing strengths & weaknesses
- Impact analysis of modifications on system elements

A production system is an SoS!
Motivation

Before embracing new production paradigms:
- Identification of existing strengths & weaknesses
- Impact analysis of modifications on system elements

Required: A Holistic analysis of existing systems from a system’s perspective!
Case Study: SenseAir AB, Sweden

New Ventures:
CO₂ (Automotive)
Ethanol (Automotive)
Freon (Refrigeration)
Methane (Fracking & Mining)

Identify areas of modification & adopt a new manufacturing approach!
Methodology

- Identification of system elements & boundaries
- Recursive system decomposition
- Mental Models
 - Systemigram
 - Systems Coupling Diagram
- Quantitative Analysis
- Survey
Systems of Interest (SOI)

Flood & Carson, 1993
Systems of Interest (SOI)

Narrow System of Interest
- Sensors, Components, PCBs, etc.
- Assembly (Glueing, curing, soldering)
- Labeling, Scanning codes, milling
- Calibration
- Final Assembly & tests
- Packaging
- Inventory, Warehouse

Narrow Environment
- ESD protection
- Gas regulations
- Controlled climate

Wider System of Interest
- R&D
- Logistics
- Administration
- Human Resource
- Tech. Support
- Customers
- Raw material suppliers
- Quality Control

Wider Environment
- Global market trends
- Population growth
- Environmental awareness
Methodology

• Identification of system elements & boundaries
• **Recursive system decomposition**
• Mental Models
 • Systemigram
 • Systems Coupling Diagram
• Quantitative Analysis
• Survey
Recursive Decomposition
Methodology

- Identification of system elements & boundaries
- Recursive system decomposition
- **Mental Models**
 - Systemigram
 - Systems Coupling Diagram
- Quantitative Analysis
- Survey
Systemigram
Systems Coupling Diagram

Reference: Lawson, 2010
Case # 1: Efficient Resource Utilization

Situation
Global economic recession
- Sensor X demand ↓
- Robot 1 in use
- Robot 2 idle
- Manual labeling

How to utilize resources efficiently?

Respondent System
Robot 2 utilized for automatic labeling robot by changing tool and adjusting its parameters.

Control Element:
Sensor group X team leader

System Assets
- Pick & Place Robot 1
- Pick & Place Robot 2
- Soldering Robot
- Glueing Robot
- Manual labeling Curing station
- Calibration Station
- Customer specific assembly (CSA)
- Packaging
- Inventory
- Personnel, etc.

Results:
- Delivery time significantly reduced
- Efficient utilization of resources
- 100 % customer satisfaction
Case # 2: Timely Order Fulfillment

Situation
- Sensor X production doubles
- Sensor Y production same
- Workload at CSA station increased

How to fulfill the orders on time with the same number of resources?

Respondent System
Soldering operations rescheduled and soldering robot shared by CSA station when not in use by sensor Y station.

Control Element:
Operations Group

System Assets
- Pick & Place Robot 1
- Pick & Place Robot 2
- Soldering Robot
- Glueing Robot
- Manual labeling
- Curing station
- Calibration Station
- Customer Specific Assembly (CSA)
- Packaging
- Inventory
- Personnel, etc.

Results:
- No Manual overload; reduced labor cost
- Timely fulfillment of orders
- Customer Satisfaction
Methodology

- Identification of system elements & boundaries
- Recursive system decomposition
- Mental Models
 - Systemigram
 - Systems Coupling Diagram
- Quantitative Analysis
- Survey
Quantitative Analysis

A Behavioral model of the system using Simulink/SimEvents
Methodology

• Identification of system elements & boundaries
• Recursive system decomposition
• Mental Models
 • Systemigmam
 • Systems Coupling Diagram
• Quantitative Analysis
• Survey
Survey Findings
Summary

- Applications of systems thinking & systems engineering on SenseAir Production System

- Improvement suggestions based on the study & survey
Future Work

• Possible system modifications required for incorporating adaptable production solutions
• Change Management Model over the production life cycle
• Implementation of IEC/ISO 15288
Conclusion

“It is in the nature of systemic thinking to yield many different views of the same thing and the same view of many different things.”

- Russel Ackoff
Thank you!
Questions ?