Models

- What is a model?
 - An abstraction of the relevant properties of a system

- Why construct or learn a model?
 - Real world is complex, a model makes assumptions and simplifies
 - Helps us tackle the complexities
 - Often a symbolic model with properties expressed in mathematical symbols and relationships
Modeling

- Very important skill
 - Useful when *solving* problems (e.g. making an algorithm)
 - When *predicting* behavior (e.g. cost in number of messages)
 - When *evaluating* and *verifying* a solution (e.g. simulation)
Modeling

Different types of models:

- Continuous models
 - Often described by differential equations involving variables which can take real (continuous) values

- Discrete event models
 - Often described by state transition systems: system evolves, moving from one state to another at discrete time steps

This course: a model of distributed computing (discrete)
Model of distributed computing

- Biggest challenge when modeling is choosing the right level of abstraction!

- The model should be powerful enough to construct impossibility proofs
 - A statement about all possible algorithms in a system

- Our model should therefore be:
 - **Precise**: explain all relevant properties
 - **Compact**: explain concisely a class of distributed systems
Sets contain elements, which can be sets:
- \(A = \{ a, \{ d \}, \{ a \} \} \) (Set \(A \) contains \(a \), and the sets \(\{ d \} \) and \(\{ a \} \))

Sometimes we do not want to list all the members of a set, then we can write:
- \(\{ x \mid x \text{ has some property} \} \), e.g. \(\{ x \mid x \text{ is an even number} \} \), the set of all even numbers

Order not important, number of occurrences not important:
- \(\{ a, b \} = \{ a, a, b \} = \{ b, a \} \)
- \(\{ a, \{ a \} \} \neq \{ a \} \)

Exception: multi-sets, number of occurrences are important:
- \(\{ a, b \} \neq \{ a, a, b \} \)

If an element \(x \) belongs to a set \(S \), we write \(x \in S \)

Every sets contains the empty set, \(\emptyset \). I.e. for all sets, the following is true: \(\emptyset \in S \)
Operations on sets, orders

- **Cartesian product** \times:
 - $X \times Y$, the set $\{ab \mid a \in X \text{ and } b \in Y\}$
 - Example, $X = \{a, b, c\}$ $Y = \{c, d, e\}$
 - $X \times Y = \{ac, ad, ae, bc, bd, be, cc, cd, ce\}$

- **Union** \cup:
 - $X \cup Y$ is the set $\{a \mid a \in X \text{ or } a \in Y\}$
 - Example: $X = \{a, b\}$ $Y = \{a, d, e\}$
 - $X \cup Y = \{a, b, d, e\}$

- Sets are ordered by the subset, \subseteq, relationship:
 - $X \subseteq Y$ iff $a \in X$ then $a \in Y$ for all $a \in X$
 - $\{a, b\} \subseteq \{a, b, c\}$
 - $\{a, b, c\} \subseteq \{a, b, c\}$
 - $\{a, d\} \nsubseteq \{a, b, c\}$
Informal model of a distributed system

- A distributed system consists of
 - a bunch of processors
 - connected by a network
 - which communicate by message passing

- How do we make a useful abstract model of this?
Formal model

- We formalize the whole distributed system as a *state transition system* (STS),

- Commonly used to model discrete systems

- We also formalize each process/node as a STS

- They are commonly used to describe systems, algorithms, and software
State Transition System (informal)

- A state transition system consists of
 - a bunch of states
 - rules describing for each state what other states it can go to (transition relation)
 - a subset of the states which the system can start in (initial states)
Example algorithm:

X := 0;
while (X < 3) do
 X = X + 1;
endwhile
X := 1

Formally:

- States \{X0, X1, X2\}
- Possible transitions \{X0\rightarrow X1, X1\rightarrow X2, X2\rightarrow X1\}
- Start states \{X0\}
State transition system - formally

A STS is formally described as the triple:
\[(C, \rightarrow, I)\]

Such that:
1. \(C\) is a set of states
2. \(\rightarrow\) is a subset of \(C \times C\), describing the possible transitions \((\rightarrow \subseteq C \times C)\)
3. \(I\) is a subset of \(C\) describing the initial states \((I \subseteq C)\)

Note that the system may have several transitions from one state
E.g. \(\rightarrow = \{X2 \rightarrow X1, X2 \rightarrow X0\}\)
We will use an STS to model 2 different things:
- The state of the whole distributed system
- The computation on each local processor

Two make it clear, we have different names for the different parts of the two STSs
- For the STS of the whole distributed system:
 - The states are called \textit{configurations}
 - The state transitions are called \textit{configuration transitions}

- For the STS of every local process:
 - The states are called \textit{states}
 - The state transitions are called \textit{events}
Distributed System as a STS

- We will model the whole distributed system as a STS \((C, \rightarrow, I)\).

- The state of the whole distributed system, \(C\), can be described by:
 - the current configuration of each processor in the system
 - the messages in transit in the network
Executions in the model

- A configuration γ is *terminal* if there exist no transition from γ to any other configuration δ.

- An *execution* in the distributed system is a sequence of configurations $(\gamma_1, \gamma_2, \gamma_3, \ldots)$ such that:
 - γ_1 is an initial configuration, i.e. $\gamma_1 \in I$.
 - there is a transition between $\gamma_i \rightarrow \gamma_{i+1}$ for every $i \geq 1$.
 - the size of the sequence is either infinite or the last configuration is terminal.

- A configuration γ is *reachable from* configuration δ if there exists a sequence $\delta = \gamma_1, \gamma_2, \ldots, \gamma_k = \gamma$, such that $\gamma_i \rightarrow \gamma_{i+1}$ for all $1 \leq i < k$.

- A configuration γ is *reachable* if it is reachable from an initial configuration δ.
Transitions

What types of transitions are allowed? (→)

- Answer: depends on the type of distributed system

We will model two different types of distributed systems, those using:

- Synchronous message passing
- Asynchronous message passing
Types of message passing

- Synchronous message passing:
 - The sending and receiving of a message \(m \), happens during one configuration transition

- Asynchronous message passing
 - The sending of a message \(m \), and the receipt of \(m \) occur during two different configuration transitions (not necessarily consecutively)

Asynchronous message passing is more general:
Synchronous message passing is a special case of asynchronous message passing
Transitions

- What exactly happens during a transition,
 - Answer: again, depends on the type of distributed system

Let's back off a moment, and look at how individual processes compute!
Asynchronous Message Passing

- Each processor in the distributed system runs a local algorithm, which either:
 - Sends a message
 - Receives a message
 - Updates its local variables (state)
Local Algorithms

- The local algorithm will also be modeled as a STS, and in each configuration transition one of the following three events happen:
 - A processor changes state from one state to another state (internal event)
 - A processor changes state from one state to another state, and sends a message to the network destined to another processor (send event)
 - A processor receives a message destined to it and changes state from one state to another (receive event)
Local Algorithms as STS

- Let M be the set of all possible messages that can be sent (each one destined to a particular process).

- A local algorithm on a processor is modeled by the STS $(Z, I, \mathcal{I}, \mathcal{S}, \mathcal{R})$ where:
 - Z is a set of all the states of the processor.
 - I is a subset of Z, containing the initial states of the STS.
 - \mathcal{R} is a subset of $Z \times M \times Z$, describing the possible receive events.
 - \mathcal{S} is a subset of $Z \times M \times Z$, describing the possible send events.
 - \mathcal{I} is a subset of $Z \times Z$, describing the possible internal events.
Example of a local algorithm

- Lets do a local algorithm running on processor p, which can receive a ping message, sends back a pong and increase a local counter (up to 2 messages)

```
        ping  pong
   ________      ________
  /          \
 `----------'
     p

     count++
```
Ping Pong local algorithm

- $M = \{\text{ping, pong}\}$
- $Z = \{c0, c0r, c0s, c1, c1r, c1s, c2\}$
- $I = \{c0\}$
- $R = \{(c0, \text{ping}, c0r), (c1, \text{ping}, c1r)\}$
- $S = \{(c0r, \text{pong}, c0s), (c1r, \text{pong}, c1s)\}$
- $I = \{(c0s, c1), (c1s, c2)\}$
Ping Pong

Ping Pong STS

- \(M = \{ \text{ping, pong} \} \)
- \(Z = \{ c0, c0r, c0s, c1, c1r, c1s, c2 \} \)
- \(I = \{ c0 \} \)
- \(R = \{ (c0, \text{ping}, c0r), (c1, \text{ping}, c1r) \} \)
- \(S = \{ (c0r, \text{pong}, c0s), (c1r, \text{pong}, c1s) \} \)
- \(I = \{ (c0s, c1), (c1s, c2) \} \)

Graphically we have the following:

![Diagram of ping pong game states and transitions](image-url)
Model of the distributed system

- Lets go back to the STS of our distributed system

- Based on the STS of a local algorithm, we can now define for the whole distributed system:
 - Its configurations
 - We want it to be the state of all processes and the network
 - Its initial configurations
 - We want it to be all possible configurations where every local algorithm is in its start state and an empty network
 - Its transitions, and
 - We want each local algorithm state event (send, receive, internal) be a configuration transition in the distributed system
A distributed system running on processes \(\{p_1, \ldots, p_n\} \), where each \(p_i \) is running a local algorithm \((Z_{pi}, I_{pi}, I_{pi}, S_{pi}, R_{pi})\), is modeled by an STS \((C, \rightarrow, I)\).

Where

- \(C = (c_{p1}, c_{p2}, \ldots, c_{pn}, M) \), where \(c_{pi} \in Z_{pi} \) and \(M \) is a multiset of messages.

I.e., a configuration in the distributed system is a sequence of every processor’s current state, and a multiset of all the messages currently in transit.
Initial configurations of the distributed system

- A distributed system running on processes \(\{p_1, ..., p_n\} \), where each \(p_i \) is running a local algorithm

 \[
 (Z_{pi}, I_{pi}, \| I_{pi}, \| S_{pi}, \| R_{pi}),
 \]

 is modeled by an STS

 \[
 (C, \rightarrow, I)
 \]

- Where

 - \(C = (c_{p1}, c_{p2}, ..., c_{pn}, M) \), where \(c_{pi} \in Z_{pi} \) and \(M \) is a multiset of messages
 - \(I = (i_{p1}, i_{p2}, ..., i_{pn}, M) \), where \(i_{pi} \in I_{pi} \) and \(M \) is empty \(\emptyset \)

- I.e., the initial configuration of the distributed system can only be a configuration where every processor is in an initial state, and there are not messages in transit in the network
Transitions of the distributed system

- A distributed system running on processes \{p_1, \ldots, p_n\}, where each \(p_i \) is running a local algorithm
 \((Z_{pi}, I_{pi}, I_{pi}, S_{pi}, R_{pi})\), is modeled by an STS
 \((C, \rightarrow, I)\)

- Where
 - The transitions of the system are \(\rightarrow = T_1 \cup T_2 \cup \ldots \cup T_n \)
 - Where for all \(1 \leq i \leq n \), \(T_i \) is the set of all configuration transitions
 - \(C_1 \rightarrow C_2 \) such that
 - \(C_1 = (p_1, \ldots, p_i, \ldots, p_n, M_1) \)
 - \(C_2 = (p_1, \ldots, p_j, \ldots, p_n, M_2) \)
 - Where one the following is true
 - \((c, d) \in I_{pi} \) such that \(M_1 = M_2 \) and \(p_i = c \) and \(p_j = d \)
 - \((c, m, d) \in S_{pi} \) such that \(M_2 = M_1 \cup \{m\} \) and \(p_i = c \) and \(p_j = d \)
 - \((c, m, d) \in R_{pi} \) such that \(M_1 = M_2 \cup \{m\} \) and \(p_i = c \) and \(p_j = d \)
Constraints

- We want to make sure that when the distributed system makes transitions, the following is preserved:
 - A process p can only receive a message after it has been sent to it by some other process
 - A process p can only change from a state c to another state d if it is currently in state c

- Therefore, events can only happen if they are applicable…
Applicable internal events

- Any internal event \(e = (c, d) \in I_{p_i} \) is said to be applicable in an configuration \(C = (c_{p1}, \ldots, c_{p_i}, \ldots, c_{pn}, M) \) if \(c_{p_i} = c \)
- If event \(e \) is applied, we get \(e(C) = (c_{p1}, \ldots, d, \ldots, c_{pn}, M) \)

- Example, if there are 2 processors, \(p1, p2 \), and
 - Set of states on \(p1 \) and \(p2 \) are \(Z1 = Z2 = \{ s1, s2, s3 \} \)
 - \(I_{p1} = \{ (s1,s3), (s3,s2), (s2, s3) \} \)
 - \(I_{p2} = \{ (s1,s2), (s2,s3), (s3, s1) \} \)

 - The internal event \((s2, s3) \in I_{p2} \) on \(p2 \) is applicable in all the following configurations:
 - \((s1, s2, M), (s2, s2, M), \) and \((s3, s2, M) \), for any multiset of messages \(M \)
Applicable send events

- Any send event \(e = (c, m, d) \in \nabla_{pi} \) is said to be applicable in an configuration \(C = (c_{p1}, \ldots, c_{pi}, \ldots, c_{pn}, M) \) if \(c_{pi} = c \)

- If event \(e \) is applied, we get \(e(C) = (c_{p1}, \ldots, d, \ldots, c_{pn}, M \cup \{m\}) \)

- Example, if there are 2 processors, \(p1, p2 \), and
 - Set of states on \(p1 \) and \(p2 \) are \(Z1 = Z2 = \{s1, s2, s3\} \)
 - \(\nabla_{p1} = \{ (s1, m, s3), (s3, n, s2), (s2, o, s3) \} \)
 - \(\nabla_{p2} = \{ (s1, n, s2), (s2, m, s3), (s3, o, s1) \} \)

 - The send event \((s2, m, s3) \in \nabla_{p2} \) on \(p2 \) is applicable in all the following configurations:
 - \((s1, s2, M), (s2, s2, M) \), and \((s3, s2, M) \), for any multiset of messages \(M \)
Applicable receive events

- Any receive event \(e=(c,m,d) \in R_{pi} \) is said to be applicable in a configuration \(C=(c_{p1}, ..., c_{pi}, ..., c_{pn}, M) \) if \(c_{pi}=c \) and \(m \in M \).

- If event \(e \) is applied, we get \(e(C)=(c_{p1}, ..., d, ..., c_{pn}, M-\{m\}) \).

- Example, if there are 2 processors, \(p1, p2 \), and
 - Set of states on \(p1 \) and \(p2 \) are \(Z_1=Z_2=\{s1, s2, s3\} \)
 - \(R_{p1}=\{ (s1, m, s3), (s3, n, s2), (s2, o, s3) \} \)
 - \(R_{p2}=\{ (s1, n, s2), (s2, m, s3), (s3, o, s1) \} \)
 - The receive event \((s2, m, s3) \in R_{p2} \) on \(p2 \) is applicable in all the following configurations:
 - \((s1, s2, M), (s2, s2, M), \) and \((s3, s2, M) \), for every multiset of messages \(M \) which contains the message \(m \) destined to \(p2 \)
Synchronous message passing

- … we now know how to model asynchronous message passing

- Synchronous message passing is similar, but easier. Read the book!
Fairness?

- Notice; several events at different processes might be applicable in a given state
 - Which one should be applied first?

 - If \(e_1, e_2, e_3 \) are applicable at a given time, should we assume they should be applied one after another \(e_1, e_2, e_3 \)?

 - Maybe such an assumption would be too strong? We would like our model to not assume too much!

 - We definitely do not want a have a stupid system where event \(e_2 \) is always applicable, but never applied!

- In other words, we sometimes want to assume some fairness in the possible executions of our model
Weakly Fair and Strongly Fair executions

- An execution is *weakly fair*, if it is guaranteed that it can never happen that an event it applicable infinitely many times after each other (consecutively), without ever occurring in the execution.

- An execution is *strongly fair*, if it is guaranteed that it can never happen that an event it applicable infinitely many times (not necessarily consecutively), without ever occurring in the execution.
Proving correctness of an algorithm

- Given our formal model, we can now proof that an algorithm is correct.

- Most interesting properties in distributed systems fall into one of these two categories:
 - Safety requirements
 - Liveness properties
Safety and Liveness

- A safety requirement requires that some property holds in every execution in \textit{each} reachable configuration.

- A liveness requirement requires that some property will hold in every execution for \textit{some} configuration which is reachable.
We will make an assertion of a property which we are interested to proof

An assertion is a predicate on configurations of the distributed system

- I.e. a function which takes a configuration as input and returns either true or false
- $P(\delta)$ is true or false
Safety Properties as assertions

- We proof a safety property by showing that its assertion is always true.

- For an STS $S = (C, \rightarrow, I)$ we write $\{P\} \rightarrow \{Q\}$ to denote that for each transition $\gamma \rightarrow \delta$ in S we have that:
 - if $P(\gamma) = \text{true}$, then $Q(\delta) = \text{true}$
An invariant property

- We say that a property P is **invariant** in $S=(C,\rightarrow, I)$ if
 1. For all initial configurations $\gamma \in I$, $P(\gamma) = true$
 2. $\{P\} \rightarrow \{P\}$ for all configurations

Theorem
If P is invariant in S, then P is **true** in each configuration in every execution

Proof:
For any execution in S, $(\gamma_1, \gamma_2, \gamma_3...)$, then we know by the definition of an execution that γ_1 is an initial configuration, and by condition 1 of an invariant $P(\gamma_1)$ is true
By induction, condition 2 of an invariant gives that $P(\gamma_k)$ is true for every $k \geq 2$
Liveness properties as Assertions

- Let *term* be an assertion which is only true if a configuration is terminal, and false otherwise.

- To show a liveness property P, we want P to be true for some configuration in every execution.

- We say that a system S terminates properly if *term* is true, then also P is true.

- A partial order $\langle W, < \rangle$ is well-founded if there is no infinite $w_1 > w_2 > w_3 \ldots$, where $w_i \in W$.
 - Example: all positive natural numbers.
Norm functions

A norm function from the set of configurations C to a well-founded set W is a function f such that if $\gamma \rightarrow \delta$, for $\delta, \gamma \in C$, then $f(\gamma) > f(\delta)$ or $P(\delta) = true$.

Example of a norm function for property P:
- Configurations $C = \{X_0, X_1, X_2, X_3\}$
- Configuration transitions $\rightarrow = \{X_2 \rightarrow X_1, X_2 \rightarrow X_0, X_0 \rightarrow X_3\}$
- Norm function $f = \{X_2 \rightarrow 100, X_1 \rightarrow 50, X_2 \rightarrow 100, X_0 \rightarrow 1\}$
- It is a norm function for this system because
 - $X_2 \rightarrow X_1$, and $f(X_2) = 100 > f(X_1) = 50$
 - $X_2 \rightarrow X_0$, and $f(X_2) = 100 > f(X_0) = 1$
 - $X_0 \rightarrow X_3$, and $P(X_3) = true$
Theorem:

In a transition system S, which properly terminates for P, and a norm function f for P exists, then P is a liveness property which will be true for some configuration in every execution.
Summary

- Distributed systems can be formally modeled by state transition systems STS
 - Asynchronous message passing
 - Synchronous message passing

- The model can be used to:
 - Prove impossibility results, i.e. statements about all possible algorithms in the system
 - Prove that a certain property always holds (safety)
 - Prove that a certain property will hold in every execution for some configurations