Large-Scale Graph Processing

Amir H. Payberah
Swedish Institute of Computer Science

amir@sics.se
May 13-15, 2014
Introduction

- **Graphs** provide a **flexible abstraction** for describing relationships between **discrete objects**.

- Many problems can be **modeled by graphs** and solved with appropriate **graph algorithms**.
Large graphs need large-scale processing.

A large graph either cannot fit into memory of single computer or it fits with huge cost.
Can we use platforms like MapReduce or Spark, which are based on data-parallel model, for large-scale graph processing?
The platforms that have worked well for developing parallel applications are not necessarily effective for large-scale graph problems.

Why?
Unstructured problems

- **Difficult** to extract *parallelism* based on partitioning of the data: the irregular structure of graphs.
- **Limited scalability**: unbalanced computational *loads* resulting from poorly partitioned data.
Graph Algorithms Characteristics (1/2)

- **Unstructured problems**
 - Difficult to extract parallelism based on partitioning of the data: the irregular structure of graphs.
 - Limited scalability: unbalanced computational loads resulting from poorly partitioned data.

- **Data-driven computations**
 - Difficult to express parallelism based on partitioning of computation: the structure of computations in the algorithm is not known a priori.
 - The computations are dictated by nodes and links of the graph.
▶ Poor data locality

- The computations and data access patterns do not have much locality: the irregular structure of graphs.
> Poor data locality

- The computations and data access patterns do not have much locality: the irregular structure of graphs.

> High data access to computation ratio

- Graph algorithms are often based on exploring the structure of a graph to perform computations on the graph data.
- Runtime can be dominated by waiting memory fetches: low locality.
Graph-Parallel Processing
Proposed Solution

Graph-Parallel Processing

- Computation typically depends on the neighbors.
Graph-Parallel Processing

- Restricts the types of computation.
- New techniques to partition and distribute graphs.
- Exploit graph structure.
- Executes graph algorithms orders-of-magnitude faster than more general data-parallel systems.
Data-Parallel vs. Graph-Parallel Computation

Data-Parallel

- Hadoop
- Spark

Graph-Parallel

- Pregel
- GraphLab
- Giraph

Table

- Row

Property Graph

- Nodes
- Edges

Result
Data-Parallel vs. Graph-Parallel Computation

- **Data-parallel computation**
 - Record-centric view of data.
 - Parallelism: processing independent data on separate resources.

- **Graph-parallel computation**
 - Vertex-centric view of graphs.
 - Parallelism: partitioning graph (dependent) data across processing resources, and resolving dependencies (along edges) through iterative computation and communication.
Outline

▶ Pregel
▶ GraphLab
▶ PowerGraph
▶ GraphX
Seven Bridges of Königsberg

- Finding a walk through the city that would cross each bridge once and only once.

- Euler proved that the problem has no solution.

Map of Königsberg in Euler’s time, highlighting the river Pregel and the bridges.
Pregel

- Large-scale graph-parallel processing platform developed at Google.

- Inspired by bulk synchronous parallel (BSP) model.
Bulk Synchronous Parallel (1/2)

- It is a parallel programming model.

- The model consists of:
 - A set of processor-memory pairs.
 - A communications network that delivers messages in a point-to-point manner.
 - A mechanism for the efficient barrier synchronization for all or a subset of the processes.
 - There are no special combining, replicating, or broadcasting facilities.
All vertices update in parallel (at the same time).
Vertex-Centric Programs

▶ Think like a vertex.

▶ Each vertex computes individually its value: in parallel

▶ Each vertex can see its local context, and updates its value accordingly.
Data Model

- A directed graph that stores the program state, e.g., the current value.
Execution Model (1/3)

- Applications run in sequence of iterations: supersteps
Execution Model (1/3)

- Applications run in sequence of iterations: supersteps

- During a superstep, user-defined functions for each vertex is invoked (method `Compute()`): in parallel

- A vertex in superstep S can:
 - reads messages sent to it in superstep S-1.
 - sends messages to other vertices: receiving at superstep S+1.
 - modifies its state.

- Vertices communicate directly with one another by sending messages.
Applications run in sequence of iterations: supersteps

During a superstep, user-defined functions for each vertex is invoked (method `Compute()`): in parallel

A vertex in superstep S can:
- reads messages sent to it in superstep $S-1$.
- sends messages to other vertices: receiving at superstep $S+1$.
- modifies its state.
Applications run in sequence of iterations: supersteps

During a superstep, user-defined functions for each vertex is invoked (method Compute()): in parallel

A vertex in superstep S can:
- reads messages sent to it in superstep $S-1$.
- sends messages to other vertices: receiving at superstep $S+1$.
- modifies its state.

Vertices communicate directly with one another by sending messages.
Superstep 0: all vertices are in the active state.
Execution Model (2/3)

- **Superstep 0**: all vertices are in the **active** state.

- A vertex **deactivates** itself by voting to **halt**: no further work to do.
Execution Model (2/3)

- **Superstep 0**: all vertices are in the *active* state.
- A vertex *deactivates* itself by voting to *halt*: no further work to do.
- A halted vertex can be active if it *receives a message*.
Superstep 0: all vertices are in the active state.

A vertex deactivates itself by voting to halt: no further work to do.

A halted vertex can be active if it receives a message.

The whole algorithm terminates when:
- All vertices are simultaneously inactive.
- There are no messages in transit.
Aggregation: a mechanism for global communication, monitoring, and data.
Aggregation: a mechanism for global communication, monitoring, and data.

- Runs after each superstep.
- Each vertex can provide a value to an aggregator in superstep S.
- The system combines those values and the resulting value is made available to all vertices in superstep $S + 1$.
Aggregation: a mechanism for global communication, monitoring, and data.

- Runs after each superstep.
- Each vertex can provide a value to an aggregator in superstep S.
- The system combines those values and the resulting value is made available to all vertices in superstep $S + 1$.
- A number of predefined aggregators, e.g., min, max, sum.
- Aggregation operators should be commutative and associative.
i_val := val

for each message m
 if m > val then val := m

if i_val == val then
 vote_to_halt
else
 for each neighbor v
 send_message(v, val)
Max Value

\[
i_{val} := \text{val}
\]

\[
\text{for each message } m \\
\quad \text{if } m > \text{val} \text{ then } \text{val} := m
\]

\[
\text{if } i_{val} = = \text{val} \text{ then} \\
\quad \text{vote_to_halt}
\]

\[
\text{else} \\
\quad \text{for each neighbor } v \\
\quad \quad \text{send_message}(v, \text{val})
\]
i_val := val

for each message m
 if m > val then val := m

if i_val == val then
 vote_to_halt
else
 for each neighbor v
 send_message(v, val)
\textbf{Example: Max Value (4/4)}

\begin{verbatim}
 i_val := val
 for each message m
 if m > val then val := m
 if i_val == val then
 vote_to_halt
 else
 for each neighbor v
 send_message(v, val)
\end{verbatim}
Example: PageRank

- Update ranks in parallel.
- Iterate until convergence.

$$R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j]$$
Example: PageRank

Pregel_PageRank(i, messages):
 // receive all the messages
 total = 0
 foreach(msg in messages):
 total = total + msg

 // update the rank of this vertex
 R[i] = 0.15 + total

 // send new messages to neighbors
 foreach(j in out_neighbors[i]):
 sendmsg(R[i] * wij) to vertex j

\[
R[i] = 0.15 + \sum_{j \in Nbrs(i)} w_{ji} R[j]
\]
Partitioning the Graph

- The pregel library divides a graph into a number of partitions.

- Each consisting of a set of vertices and all of those vertices' outgoing edges.

- Vertices are assigned to partitions based on their vertex-ID (e.g., hash(ID)).
- Master-worker model.

- User programs are copied on machines.

- One copy becomes the master.
The master is responsible for
- Coordinating workers activity.
- Determining the number of partitions.

Each worker is responsible for
- Maintaining the state of its partitions.
- Executing the user’s `Compute()` method on its vertices.
- Managing messages to and from other workers.
The master assigns one or more partitions to each worker.
The master assigns one or more partitions to each worker.

The master assigns a portion of user input to each worker.

- Set of records containing an arbitrary number of vertices and edges.
- If a worker loads a vertex that belongs to that worker’s partitions, the appropriate data structures are immediately updated.
- Otherwise the worker enqueues a message to the remote peer that owns the vertex.
After the input has finished loading, all vertices are marked as active.

The master instructs each worker to perform a superstep.

After the computation halts, the master may instruct each worker to save its portion of the graph.
Combiner

- Sending a message between workers incurs some **overhead**: use combiner.

- This can be reduced in some cases: sometimes vertices only care about a **summary value** for the messages it is sent (e.g., min, max, sum, avg).
Fault Tolerance (1/2)

- Fault tolerance is achieved through **checkpointing**.

- At **start of each superstep**, master tells workers to **save** their state:
 - Vertex values, edge values, incoming messages
 - Saved to persistent storage

- Master saves **aggregator values** (if any).

- This is **not** necessarily done at every superstep: **costly**
Fault Tolerance (2/2)

When master *detects* one or more *worker failures*:

- All workers revert to last *checkpoint*.
- Continue *from there*.
- That is a lot of *repeated work*.
- At least it is better than redoing the whole job.
Pregel Summary

- Bulk Synchronous Parallel model
- Vertex-centric
- Superstep: sequence of iterations
- Master-worker model
- Communication: message passing
Pregel Limitations

- Inefficient if different regions of the graph converge at different speed.

- Can suffer if one task is more expensive than the others.

- Runtime of each phase is determined by the slowest machine.
Data Model

- A directed graph that stores the program state, called data graph.
The scope of vertex v is the data stored in vertex v, in all adjacent vertices and adjacent edges.
Rather than adopting a message passing as in Pregel, GraphLab allows the user defined function of a vertex to read and modify any of the data in its scope.
Execution Model (2/4)

- **Update function**: user-defined function similar to *Compute* in Pregel.

- Can *read* and *modify* the data within the *scope* of a vertex.

- *Schedules* the future execution of other update functions.
Execution Model (3/4)

Input: Data Graph $G = (V, E, D)$
Input: Initial task set $\mathcal{T} = \{(f, v_1), (g, v_2), \ldots\}$
while \mathcal{T} is not Empty do
1. $(f, v) \leftarrow \text{RemoveNext}(\mathcal{T})$
2. $(\mathcal{T}', S_v) \leftarrow f(v, S_v)$
3. $\mathcal{T} \leftarrow \mathcal{T} \cup \mathcal{T}'$

Output: Modified Data Graph $G = (V, E, D')$

- After executing an update function (f, g, \cdots) the modified scope data in S_v is written back to the data graph.

- Each task in the set of tasks \mathcal{T}, is a tuple (f, v) consisting of an update function f and a vertex v.
Sync function: similar to aggregate in Pregel.

Maintains global aggregates.

Performs periodically in the background.
Example: PageRank

GraphLab_PageRank(i)

// compute sum over neighbors
total = 0
foreach(j in in_neighbors(i)):
 total = total + R[j] * wji

// update the PageRank
R[i] = 0.15 + total

// trigger neighbors to run again
foreach(j in out_neighbors(i)):
 signal vertex-program on j

\[
R[i] = 0.15 + \sum_{j \in Nbrs(i)} w_{ji} R[j]
\]
Overlapped scopes: race-condition in simultaneous execution of two update functions.
Data Consistency (1/3)

- Overlapped **scopes**: race-condition in simultaneous execution of two update functions.

- **Full** consistency: during the execution $f(v)$, no other function reads or modifies data within the v scope.
Data Consistency (1/3)

- **Overlapped scopes**: race-condition in simultaneous execution of two update functions.

- **Full consistency**: during the execution $f(v)$, no other function reads or modifies data within the v scope.

- **Edge consistency**: during the execution $f(v)$, no other function reads or modifies any of the data on v or any of the edges adjacent to v.
Data Consistency (1/3)

- Overlapped scopes: race-condition in simultaneous execution of two update functions.

- Full consistency: during the execution $f(v)$, no other function reads or modifies data within the v scope.

- Edge consistency: during the execution $f(v)$, no other function reads or modifies any of the data on v or any of the edges adjacent to v.

- Vertex consistency: during the execution $f(v)$, no other function will be applied to v.
Data Consistency (2/3)

Consistency vs. Parallelism

[Low, Y., GraphLab: A Distributed Abstraction for Large Scale Machine Learning (Doctoral dissertation, University of California), 2013.]
Proving the correctness of a parallel algorithm: **sequential consistency**
Proving the correctness of a parallel algorithm: sequential consistency

Sequential consistency: if for every parallel execution, there exists a sequential execution of update functions that produces an equivalent result.
Proving the correctness of a parallel algorithm: sequential consistency

Sequential consistency: if for every parallel execution, there exists a sequential execution of update functions that produces an equivalent result.

A simple method to achieve serializability is to ensure that the scopes of concurrently executing update functions do not overlap.

- The full consistency model is used.
- The edge consistency model is used and update functions do not modify data in adjacent vertices.
- The vertex consistency model is used and update functions only access local vertex data.
GraphLab Implementation

- Shared memory implementation
- Distributed implementation
GraphLab Implementation

- Shared memory implementation
- Distributed implementation
In what order should the tasks (vertex-update function pairs) be called?
Tasks Schedulers (1/2)

In what order should the tasks (vertex-update function pairs) be called?

- A collection of base schedules, e.g., round-robin, and synchronous.
- Set scheduler: enables users to compose custom update schedules.
How to add new task in the queue?

Input: Data Graph $G = (V, E, D)$
Input: Initial task set $\mathcal{T} = \{(f, v_1), (g, v_2), \ldots\}$

while \mathcal{T} is not Empty do

1. $(f, v) \leftarrow \text{RemoveNext}(\mathcal{T})$
2. $(\mathcal{T}', S_v) \leftarrow f(v, S_v)$
3. $\mathcal{T} \leftarrow \mathcal{T} \cup \mathcal{T}'$

Output: Modified Data Graph $G = (V, E, D')$
How to add new task in the queue?

- **FIFO**: only permits task creation but do **not** permit task reordering.
- **Prioritized**: permits task reordering at the cost of increased overhead.
Consistency

- Implemented in C++ using PThreads for parallelism.
- Consistency: read-write lock
Consistency

- Implemented in C++ using PThreads for parallelism.
- Consistency: read-write lock
- Vertex consistency
 - Central vertex (write-lock)
- Edge consistency
 - Central vertex (write-lock)
 - Adjacent vertices (read-locks)
- Full consistency
 - Central vertex (write-locks)
 - Adjacent vertices (write-locks)
- Deadlocks are avoided by acquiring locks sequentially following a canonical order.
GraphLab Implementation

- Shared memory implementation

- Distributed implementation
Distributed Implementation

- **Graph partitioning**
 - How to efficiently load, partition and distribute the data graph across machines?

- **Consistency**
 - How to achieve consistency in the distributed setting?

- **Fault tolerance**
Graph Partitioning - Phase 1 (1/2)

- **Two-phase** partitioning.

- Partitioning the data graph into \(k \) parts, called **atom**: \(k \gg \) number of machines.

- **Meta-graph**: the graph of atoms (one vertex for each atom).

- **Atom weight**: the amount of data it stores.

- **Edge weight**: the number of edges crossing the atoms.
Each atom is stored as a separate file on a distributed storage system, e.g., HDFS.

Each atom file is a simple binary that stores interior and the ghosts of the partition information.

Ghost: set of vertices and edges adjacent to the partition boundary.
Meta-graph is very small.

A fast balanced partition of the meta-graph over the physical machines.

Assigning graph atoms to machines.
Consistency

▶ To achieve a *serializable parallel execution* of a set of *dependent tasks*.

▶ Chromatic Engine

▶ Distributed Locking Engine
Construct a **vertex coloring**: assigns a color to each vertex such that no adjacent vertices share the same color.
Construct a vertex coloring: assigns a color to each vertex such that no adjacent vertices share the same color.

Edge consistency: executing, synchronously, all update tasks associated with vertices of the same color before proceeding to the next color.
Construct a vertex coloring: assigns a color to each vertex such that no adjacent vertices share the same color.

Edge consistency: executing, synchronously, all update tasks associated with vertices of the same color before proceeding to the next color.

Full consistency: no vertex shares the same color as any of its distance two neighbors.
Construct a **vertex coloring**: assigns a color to each vertex such that no adjacent vertices share the same color.

Edge consistency: executing, synchronously, all update tasks associated with vertices of the same color before proceeding to the next color.

Full consistency: no vertex shares the same color as any of its distance two neighbors.

Vertex consistency: assigning all vertices the same color.
Consistency - Distributed Locking Engine

- Associating a readers-writer lock with each vertex.

- **Vertex consistency**
 - Central vertex (write-lock)

- **Edge consistency**
 - Central vertex (write-lock), Adjacent vertices (read-locks)

- **Full consistency**
 - Central vertex (write-locks), Adjacent vertices (write-locks)

- **Deadlocks** are avoided by acquiring locks sequentially following a canonical order.
Fault Tolerance - Synchronous

- The system periodically signals all computation activity to halt.
- Then synchronizes all caches (ghosts) and saves to disk all data which has been modified since the last snapshot.
- Simple, but eliminates the system's advantage of asynchronous computation.
Fault Tolerance - Asynchronous

- Based on the Chandy-Lamport algorithm.
- The snapshot function is implemented as an update function in vertices.
- The Snapshot update takes priority over all other update functions.
- **Edge Consistency** is used on all update functions.

```java
if v was already snapshotted then
    Quit
Save D_v // Save current vertex
// Save all edges connected to un-snapshotted vertices
foreach u ∈ N[v] do // Loop over neighbors
    if u was not snapshotted then
        Save D_{u→v} if edge u → v exists
        Save D_{v→u} if edge v → u exists
        Reschedule u for a Snapshot Update
Mark v as snapshotted
```
GraphLab Summary

- Asynchronous model
- Vertex-centric
- Communication: distributed shared memory
- Three consistency levels: full, edge-level, and vertex-level
GraphLab Limitations

- Poor performance on **Natural** graphs.
Natural Graphs

- Graphs derived from natural phenomena.
- Skewed Power-Law degree distribution.
Natural Graphs Challenges

- Traditional graph-partitioning algorithms (edge-cut algorithms) perform poorly on Power-Law Graphs.

- Challenges of high-degree vertices.
Proposed Solution

Vertex-Cut Partitioning
Proposed Solution

Vertex-Cut Partitioning

Edge-cut

Vertex-cut
Edge-cut vs. Vertex-cut Partitioning

Diagram showing the comparison between edge-cut and vertex-cut partitioning. The diagram illustrates how network graphs are partitioned between two CPUs (cpu1 and cpu2) for large-scale graph processing.
Edge-cut vs. Vertex-cut Partitioning

Edge-cut

Vertex-cut
PowerGraph
PowerGraph

- Vertex-cut partitioning of graphs.
- Factorizes the GraphLab update function into the Gather, Apply and Scatter phases (GAS).
Gather

- **Accumulate** information about neighborhood through a generalized **sum**.
Gather-Apply-Scatter Programming Model

- **Gather**
 - Accumulate information about neighborhood through a generalized sum.

- **Apply**
 - Apply the accumulated value to center vertex.
Gather-Apply-Scatter Programming Model

- **Gather**
 - Accumulate information about neighborhood through a generalized sum.

- **Apply**
 - Apply the accumulated value to center vertex.

- **Scatter**
 - Update adjacent edges and vertices.
Data Model

- A directed graph that stores the program state, called data graph.
Vertex-centric programming: implementing the GASVertexProgram interface (vertex-program for short).

Similar to Comput in Pregel, and update function in GraphLab.

```java
interface GASVertexProgram(u) {
    // Run on gather_nbrs(u)
    gather(D_u, D_u-v, D_v) → Accum
    sum(Accum left, Accum right) → Accum
    apply(D_u, Accum) → D_u^new
    // Run on scatter_nbrs(u)
    scatter(D_u^new, D_u-v, D_v) → (D_u-v^new, Accum)
}
```
Input: Center vertex \(u \)

\begin{align*}
\text{if } \text{Cache Disabled} \text{ then} \\
& \quad \text{// Basic Gather-Apply-Scatter Model} \\
& \quad \text{foreach neighbor } v \text{ in } \text{gather_nbrs}(u) \text{ do} \\
& \quad \quad a_u \leftarrow \text{sum}(a_u, \text{gather}(D_u, D_{u-v}, D_v)) \\
& \quad D_u \leftarrow \text{apply}(D_u, a_u) \\
& \quad \text{foreach neighbor } v \text{ in } \text{scatter_nbrs}(u) \text{ do} \\
& \quad \quad (D_{u-v}) \leftarrow \text{scatter}(D_u, D_{u-v}, D_v)
\end{align*}

\begin{align*}
\text{else if } \text{Cache Enabled} \text{ then} \\
& \quad \text{// Faster GAS Model with Delta Caching} \\
& \quad \text{if cached accumulator } a_u \text{ is empty then} \\
& \quad \quad \text{foreach neighbor } v \text{ in } \text{gather_nbrs}(u) \text{ do} \\
& \quad \quad \quad a_u \leftarrow \text{sum}(a_u, \text{gather}(D_u, D_{u-v}, D_v)) \\
& \quad D_u \leftarrow \text{apply}(D_u, a_u) \\
& \quad \text{foreach neighbor } v \text{ in } \text{scatter_nbrs}(u) \text{ do} \\
& \quad \quad (D_{u-v}, \Delta a) \leftarrow \text{scatter}(D_u, D_{u-v}, D_v) \\
& \quad \quad \text{if } a_v \text{ and } \Delta a \text{ are not Empty then } a_v \leftarrow \text{sum}(a_v, \Delta a) \\
& \quad \quad \text{else } a_v \leftarrow \text{Empty}
\end{align*}
Input: Center vertex \(u \)

if Cache Disabled then

```plaintext
// Basic Gather-Apply-Scatter Model
foreach neighbor \( v \) in gather_nbrs(\( u \)) do
  \( a_u \leftarrow \text{sum}(a_u, \text{gather}(D_u, D_{u-v}, D_v)) \)

\( D_u \leftarrow \text{apply}(D_u, a_u) \)

foreach neighbor \( v \) scatter_nbrs(\( u \)) do
  \( (D_{u-v}) \leftarrow \text{scatter}(D_u, D_{u-v}, D_v) \)
```

else if Cache Enabled then

```plaintext
// Faster GAS Model with Delta Caching
if cached accumulator \( a_u \) is empty then
  foreach neighbor \( v \) in gather_nbrs(\( u \)) do
    \( a_u \leftarrow \text{sum}(a_u, \text{gather}(D_u, D_{u-v}, D_v)) \)

\( D_u \leftarrow \text{apply}(D_u, a_u) \)

foreach neighbor \( v \) scatter_nbrs(\( u \)) do
  \( (D_{u-v}, \Delta a) \leftarrow \text{scatter}(D_u, D_{u-v}, D_v) \)
  if \( a_v \) and \( \Delta a \) are not Empty then \( a_v \leftarrow \text{sum}(a_v, \Delta a) \)
  else \( a_v \leftarrow \text{Empty} \)
```
Example: PageRank

\[
R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j]
\]
Scheduling (1/5)

Input: Data Graph \(G = (V, E, D) \)
Input: Initial task set \(\mathcal{T} = \{(f, v_1), (g, v_2), \ldots\} \)

while \(\mathcal{T} \) is not Empty do

1. \((f, v) \leftarrow \text{RemoveNext} (\mathcal{T}) \)
2. \((\mathcal{T}', S_v) \leftarrow f(v, S_v) \)
3. \(\mathcal{T} \leftarrow \mathcal{T} \cup \mathcal{T}' \)

Output: Modified Data Graph \(G = (V, E, D') \)

- PowerGraph inherits the dynamic scheduling of GraphLab.
Initially all vertices are active.

\[\textbf{Input:} \text{Data Graph } G = (V, E, D)\]
\[\textbf{Input:} \text{Initial task set } \mathcal{T} = \{(f, v_1), (g, v_2), \ldots\}\]
\[\textbf{while} \mathcal{T} \text{ is not Empty do}\]
\[1. \quad (f, v) \leftarrow \text{RemoveNext} (\mathcal{T})\]
\[2. \quad (\mathcal{T}', S_v) \leftarrow f(v, S_v)\]
\[3. \quad \mathcal{T} \leftarrow \mathcal{T} \cup \mathcal{T}'\]
\[\textbf{Output:} \text{Modified Data Graph } G = (V, E, D')\]
Initially all vertices are active.

PowerGraph executes the vertex-program on the active vertices until none remain.

Input: Data Graph $G = (V, E, D)$
Input: Initial task set $\mathcal{T} = \{(f, v_1), (g, v_2), \ldots\}$
while \mathcal{T} is not Empty do
1. $(f, v) \leftarrow \text{RemoveNext}(\mathcal{T})$
2. $(\mathcal{T}', S_v) \leftarrow f(v, S_v)$
3. $\mathcal{T} \leftarrow \mathcal{T} \cup \mathcal{T}'$
Output: Modified Data Graph $G = (V, E, D')$
Initially all vertices are active.

PowerGraph executes the vertex-program on the active vertices until none remain.

The order of executing activated vertices is up to the PowerGraph execution engine.
Initially all vertices are active.

PowerGraph executes the vertex-program on the active vertices until none remain.

The order of executing activated vertices is up to the PowerGraph execution engine.

Once a vertex-program completes the scatter phase it becomes inactive until it is reactivated.
Initially all vertices are active.

PowerGraph executes the vertex-program on the active vertices until none remain.

The order of executing activated vertices is up to the PowerGraph execution engine.

Once a vertex-program completes the scatter phase it becomes inactive until it is reactivated.

Vertices can activate themselves and neighboring vertices.
PowerGraph can execute both *synchronously* and *asynchronously*.

- Bulk synchronous execution
- Asynchronous execution
Similar to Pregel.
Similar to Pregel.

Minor-step: executing the gather, apply, and scatter in order.
 - Runs synchronously on all active vertices with a barrier at the end.
Similar to Pregel.

- **Minor-step**: executing the **gather**, **apply**, and **scatter** in order.
 - Runs **synchronously** on all **active** vertices with a **barrier** at the end.

- **Super-step**: a complete series of GAS minor-steps.
Similar to Pregel.

- **Minor-step**: executing the **gather**, **apply**, and **scatter in order**.
 - Runs **synchronously** on all **active** vertices with a **barrier** at the end.

- **Super-step**: a complete series of GAS minor-steps.

- Changes made to the vertex/edge data are committed at the end of each **minor-step** and are visible in the **subsequent minor-steps**.
Changes made to the vertex/edge data during the apply and scatter functions are immediately committed to the graph.

- Visible to subsequent computation on neighboring vertices.
Changes made to the vertex/edge data during the apply and scatter functions are immediately committed to the graph.

Visible to subsequent computation on neighboring vertices.

Serializability: prevents adjacent vertex-programs from running concurrently using a fine-grained locking protocol.
Changes made to the vertex/edge data during the **apply and scatter** functions are **immediately** committed to the graph.

- **Visible** to subsequent computation on neighboring vertices.

Serializability: prevents **adjacent vertex-programs** from running concurrently using a **fine-grained locking** protocol.

- **Dining philosophers** problem, where each vertex is a philosopher, and each edge is a fork.
Changes made to the vertex/edge data during the apply and scatter functions are immediately committed to the graph.

- Visible to subsequent computation on neighboring vertices.

Serializability: prevents adjacent vertex-programs from running concurrently using a fine-grained locking protocol.

- Dining philosophers problem, where each vertex is a philosopher, and each edge is a fork.
- GraphLab implements Dijkstra’s solution, where forks are acquired sequentially according to a total ordering.
Changes made to the vertex/edge data during the apply and scatter functions are **immediately** committed to the graph.

- Visible to subsequent computation on neighboring vertices.

Serializability: prevents adjacent vertex-programs from running concurrently using a fine-grained locking protocol.

- **Dining philosophers** problem, where each vertex is a philosopher, and each edge is a fork.
- **GraphLab** implements **Dijkstra's solution**, where forks are acquired sequentially according to a total ordering.
- **PowerGraph** implements **Chandy-Misra solution**, which acquires all forks simultaneously.
Delta Caching (1/2)

- Changes in a few of its neighbors → triggering a vertex-program

- The gather operation is invoked on all neighbors: wasting computation cycles
Changes in a few of its neighbors \rightarrow triggering a vertex-program

The gather operation is invoked on all neighbors: wasting computation cycles

Maintaining a cache of the accumulator a_v from the previous gather phase for each vertex.

The scatter can return an additional Δa, which is added to the cached accumulator a_v.
Input: Center vertex u

if Cache Disabled then

```plaintext
// Basic Gather-Apply-Scatter Model
foreach neighbor $v$ in gather_nbrs($u$) do
  $a_u \leftarrow \text{sum}(a_u, \text{gather}(D_u, D_{u-v}, D_v))$

$D_u \leftarrow \text{apply}(D_u, a_u)$

foreach neighbor $v$ scatter_nbrs($u$) do
  $(D_{u-v}) \leftarrow \text{scatter}(D_u, D_{u-v}, D_v)$
```

else if Cache Enabled then

```plaintext
// Faster GAS Model with Delta Caching
if cached accumulator $a_u$ is empty then
  foreach neighbor $v$ in gather_nbrs($u$) do
    $a_u \leftarrow \text{sum}(a_u, \text{gather}(D_u, D_{u-v}, D_v))$

$D_u \leftarrow \text{apply}(D_u, a_u)$

foreach neighbor $v$ scatter_nbrs($u$) do
  $(D_{u-v}, \Delta a) \leftarrow \text{scatter}(D_u, D_{u-v}, D_v)$

if $a_v$ and $\Delta a$ are not Empty then
  $a_v \leftarrow \text{sum}(a_v, \Delta a)$
else
  $a_v \leftarrow \text{Empty}$
```
Input: Center vertex u

if Cache Disabled then

 // Basic Gather-Apply-Scatter Model

 foreach neighbor v in gather_nbrs(u) do
 $$a_u \leftarrow \text{sum}(a_u, \text{gather}(D_u, D_{u-v}, D_v))$$

 $D_u \leftarrow \text{apply}(D_u, a_u)$

 foreach neighbor v scatter_nbrs(u) do
 $$D_{u-v} \leftarrow \text{scatter}(D_u, D_{u-v}, D_v)$$

else if Cache Enabled then

 // Faster GAS Model with Delta Caching

 if cached accumulator a_u is empty then

 foreach neighbor v in gather_nbrs(u) do
 $$a_u \leftarrow \text{sum}(a_u, \text{gather}(D_u, D_{u-v}, D_v))$$

 $D_u \leftarrow \text{apply}(D_u, a_u)$

 foreach neighbor v scatter_nbrs(u) do
 $$(D_{u-v}, \Delta a) \leftarrow \text{scatter}(D_u, D_{u-v}, D_v)$$

 if a_v and Δa are not Empty then $a_v \leftarrow \text{sum}(a_v, \Delta a)$

else $a_v \leftarrow \text{Empty}$
Example: PageRank (Delta-Caching)

\[
R[i] = 0.15 + \sum_{j \in Nbrs(i)} w_{ji} R[j]
\]

PowerGraph_PageRank\(i\):

Gather\(j \rightarrow i\):

\[
\text{return } w_{ji} \times R[j]
\]

sum\(a, b\):

\[
\text{return } a + b
\]

// total: Gather and sum

Apply\(i, \text{total}\):

\[
\text{new} = 0.15 + \text{total}
\]

\[
R[i].\text{delta} = \text{new} - R[i]
\]

\[
R[i] = \text{new}
\]

Scatter\(i \rightarrow j\):

\[
\text{if } R[i] \text{ changed then activate}(j)
\]

\[
\text{return } w_{ij} \times R[i].\text{delta}
\]
Graph Partitioning

- Vertex-cut partitioning.

- Evenly assign edges to machines.
 - Minimize machines spanned by each vertex.

- Two proposed solutions:
 - Random edge placement.
 - Greedy edge placement.
Random Vertex-Cuts

- Randomly assign edges to machines.
- Completely parallel and easy to distribute.
- High replication factor.
Greedy Vertex-Cuts (1/2)

- $A(v)$: set of machines that contain adjacent edges of v.

Case 1: If $A(u)$ and $A(v)$ intersect, then the edge should be assigned to a machine in the intersection.

Case 2: If $A(u)$ and $A(v)$ are not empty and do not intersect, then the edge should be assigned to one of the machines from the vertex with the most unassigned edges.

Case 3: If only one of the two vertices has been assigned, then choose a machine from the assigned vertex.

Case 4: If neither vertex has been assigned, then assign the edge to the least loaded machine.
- $A(v)$: set of machines that contain adjacent edges of v.

- **Case 1**: If $A(u)$ and $A(v)$ intersect, then the edge should be assigned to a machine in the intersection.
Greedy Vertex-Cuts (1/2)

- **A(v)**: set of machines that contain adjacent edges of v.

- **Case 1**: If A(u) and A(v) intersect, then the edge should be assigned to a machine in the intersection.

- **Case 2**: If A(u) and A(v) are not empty and do not intersect, then the edge should be assigned to one of the machines from the vertex with the most unassigned edges.
A(v): set of machines that contain adjacent edges of v.

Case 1: If A(u) and A(v) intersect, then the edge should be assigned to a machine in the intersection.

Case 2: If A(u) and A(v) are not empty and do not intersect, then the edge should be assigned to one of the machines from the vertex with the most unassigned edges.

Case 3: If only one of the two vertices has been assigned, then choose a machine from the assigned vertex.
Greedy Vertex-Cuts (1/2)

- **$A(v)$**: set of machines that contain adjacent edges of v.

- **Case 1**: If $A(u)$ and $A(v)$ intersect, then the edge should be assigned to a machine in the intersection.

- **Case 2**: If $A(u)$ and $A(v)$ are not empty and do not intersect, then the edge should be assigned to one of the machines from the vertex with the most unassigned edges.

- **Case 3**: If only one of the two vertices has been assigned, then choose a machine from the assigned vertex.

- **Case 4**: If neither vertex has been assigned, then assign the edge to the least loaded machine.
Coordinated edge placement:
• Requires coordination to place each edge
• Slower, but higher quality cuts

Oblivious edge placement:
• Approx. greedy objective without coordination
• Faster, but lower quality cuts
PowerGraph Summary

- **Gather-Apply-Scatter** programming model
- **Synchronous** and **Asynchronous** models
- **Vertex-cut** graph partitioning
Any limitations?
Graph-parallel computation: restricting the types of computation to achieve performance.
Data-Parallel vs. Graph-Parallel Computation

- **Graph-parallel** computation: restricting the types of computation to achieve performance.

- **But**, the same restrictions make it difficult and inefficient to express many stages in a typical graph-analytics pipeline.
Moving between table and graph views of the same physical data.

Inefficient: extensive data movement and duplication across the network and file system.
GraphX vs. Data-Parallel/Graph-Parallel Systems

Live-Journal: 69 Million Edges

- Mahout/Hadoop: 1340 seconds
- Naïve Spark: 354 seconds
- Giraph: 207 seconds
- GraphX: 68 seconds
- GraphLab: 22 seconds

Runtime (in seconds, PageRank for 10 iterations)
GraphX vs. Data-Parallel/Graph-Parallel Systems

Live-Journal: 69 Million Edges

- Mahout/Hadoop: 1340 seconds
- Naïve Spark: 354 seconds
- Giraph: 207 seconds
- GraphX: 68 seconds
- GraphLab: 22 seconds

Runtime (in seconds, PageRank for 10 iterations)

Raw Wikipedia → Hyperlinks → PageRank → Top 20 Pages

Spark Preprocess → Compute → Spark Post.

- Spark: 1492 seconds
- Giraph + Spark: 605 seconds
- GraphX: 342 seconds
- GraphLab + Spark: 375 seconds

Total Runtime (in Seconds)
GraphX

- **New API** that blurs the distinction between **Tables** and **Graphs**.

- **New system** that unifies **Data-Parallel** and **Graph-Parallel** systems.

- It is implemented on top of **Spark**.
Tables and Graphs are composable views of the same physical data.

Each view has its own operators that exploit the semantics of the view to achieve efficient execution.
Data Model

- **Property Graph**: represented using **two** Spark **RDDs**:
 - Edge collection: VertexRDD
 - Vertex collection: EdgeRDD

```scala
// VD: the type of the vertex attribute
// ED: the type of the edge attribute
class Graph[VD, ED] {
  val vertices: VertexRDD[VD]
  val edges: EdgeRDD[ED]
}
```
// Vertex collection
class VertexRDD[VD] extends RDD[(VertexId, VD)]

// Edge collection
class EdgeRDD[ED] extends RDD[Edge[ED]]
case class Edge[ED](srcId: VertexId = 0, dstId: VertexId = 0,
 attr: ED = null.asInstanceOf[ED])

// Edge Triple
class EdgeTriplet[VD, ED] extends Edge[ED]

- **EdgeTriplet** represents an edge along with the vertex attributes of its neighboring vertices.

Example (1/3)

Property Graph

Vertex Table

<table>
<thead>
<tr>
<th>Id</th>
<th>Property (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(rxin, student)</td>
</tr>
<tr>
<td>7</td>
<td>(jgonzal, postdoc)</td>
</tr>
<tr>
<td>5</td>
<td>(franklin, professor)</td>
</tr>
<tr>
<td>2</td>
<td>(istoica, professor)</td>
</tr>
</tbody>
</table>

Edge Table

<table>
<thead>
<tr>
<th>SrcId</th>
<th>DstId</th>
<th>Property (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>Collaborator</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Advisor</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Colleague</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>PI</td>
</tr>
</tbody>
</table>
val sc: SparkContext

// Create an RDD for the vertices
val users: VertexRDD[(String, String)] = sc.parallelize(
 Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
 (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges
val relationships: EdgeRDD[String] = sc.parallelize(
 Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"),
 Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")

// Build the initial Graph
val userGraph: Graph[(String, String), String] =
 Graph(users, relationships, defaultUser)
// Constructed from above
val userGraph: Graph[(String, String), String]

// Count all users which are postdocs
userGraph.vertices.filter((id, (name, pos)) => pos == "postdoc").count

// Count all the edges where src > dst
userGraph.edges.filter(e => e.srcId > e.dstId).count

// Use the triplets view to create an RDD of facts
val facts: RDD[String] = graph.triplets.map(triplet =>
 triplet.srcAttr._1 + " is the " +
 triplet.attr + " of " + triplet.dstAttr._1)

// Remove missing vertices as well as the edges to connected to them
val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")
facts.collect.foreach(println(_))
They yield new graphs with the vertex or edge properties modified by the map function.

The graph structure is unaffected.
Both are logically equivalent, but the second one does not preserve the structural indices and would not benefit from the GraphX system optimizations.
Map Reduce Triplets

- Map-Reduce for each vertex

\[
\text{mapF}(A \rightarrow B) \rightarrow A_1
\]

\[
\text{mapF}(A \rightarrow C) \rightarrow A_2
\]

\[
\text{reduceF}(A_1, A_2) \rightarrow A
\]
Map Reduce Triplets

- Map-Reduce for each vertex

```
val oldestFollowerAge = graph.mapReduceTriplets(
  e => (e.dstAttr, e.srcAttr), // Map
  (a, b) => max(a, b) // Reduce
).vertices
```

// what is the age of the oldest follower for each user?
class Graph[VD, ED] {
 // returns a new graph with all the edge directions reversed
 def reverse: Graph[VD, ED]

 // returns the graph containing only the vertices and edges that satisfy
 // the vertex predicate
 def subgraph(epred: EdgeTriplet[VD,ED] => Boolean,
 vpred: (VertexId, VD) => Boolean): Graph[VD, ED]

 // a subgraph by returning a graph that contains the vertices and edges
 // that are also found in the input graph
 def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]
}

Amir H. Payberah (SICS)
Large-Scale Graph Processing
Structural Operators Example

// Build the initial Graph
val graph = Graph(users, relationships, defaultUser)

// Run Connected Components
val ccGraph = graph.connectedComponents()

// Remove missing vertices as well as the edges to connected to them
val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

// Restrict the answer to the valid subgraph
val validCCGraph = ccGraph.mask(validGraph)
Join Operators

- To join data from external collections (RDDs) with graphs.

```scala
class Graph[VD, ED] {
  // joins the vertices with the input RDD and returns a new graph
  // by applying the map function to the result of the joined vertices
  def joinVertices[U](table: RDD[(VertexId, U)])
    (map: (VertexId, VD, U) => VD): Graph[VD, ED]

  // similarly to joinVertices, but the map function is applied to
  // all vertices and can change the vertex property type
  def outerJoinVertices[U, VD2](table: RDD[(VertexId, U)])
    (map: (VertexId, VD, Option[U]) => VD2): Graph[VD2, ED]
}
```
object GraphLoader {
 def edgeListFile(
 sc: SparkContext,
 path: String,
 canonicalOrientation: Boolean = false,
 minEdgePartitions: Int = 1)
 : Graph[Int, Int]
}

// graph file
This is a comment
2 1
4 1
1 2
GraphX and Spark

- GraphX is implemented on top of Spark
- In-memory caching
- Lineage-based fault tolerance
- Programmable partitioning
Distributed Graph Representation (1/2)

- Representing graphs using two RDDs: edge-collection and vertex-collection
- Vertex-cut partitioning (like PowerGraph)
Each vertex partition contains a **bitmask** and **routing table**.

Routing table: a **logical map** from a vertex id to the set of edge partitions that contains adjacent edges.

Bitmask: enables the set intersection and filtering.
- Vertices bitmasks are updated after each operation (e.g., mapReduceTriplets).
- Vertices hidden by the bitmask **do not** participate in the graph operations.
Summary

- **Pregel**
 - Synchronous model: super-step
 - Message passing

- **GraphLab**
 - Asynchronous model: distributed shared-memory
 - Edge-cut partitioning

- **PowerGraph**
 - GAS programming model
 - Vertex-cut partitioning

- **GraphX**
 - Unifying data-parallel and graph-parallel analytics
 - Vertex-cut partitioning
Questions?

Acknowledgements

Some pictures were derived from the Spark web site (http://spark.apache.org/).