The Spark Big Data Analytics Platform

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)
1393/10/10
“THAT’S your Ark for the Big Data flood? Noah, you will need a lot more storage space!”
Big Data refers to datasets and flows large enough that has outpaced our capability to store, process, analyze, and understand.
Where Does Big Data Come From?
The number of web pages indexed by Google, which were around one million in 1998, have exceeded one trillion in 2008, and its expansion is accelerated by appearance of the social networks.*

*“Mining big data: current status, and forecast to the future” [Wei Fan et al., 2013]
The amount of mobile data traffic is expected to grow to 10.8 Exabyte per month by 2016.*

*“Worldwide Big Data Technology and Services 2012-2015 Forecast” [Dan Vesset et al., 2013]
More than **65 billion devices** were connected to the Internet by 2010, and this number will go up to **230 billion** by 2020.*

“The Internet of Things Is Coming” [John Mahoney et al., 2013]
Big Data Market Driving Factors

Many companies are moving towards using Cloud services to access Big Data analytical tools.
Open source communities
How To Store and Process Big Data?
Scale Up vs. Scale Out (1/2)

- Scale up or scale vertically: adding resources to a single node in a system.

- Scale out or scale horizontally: adding more nodes to a system.
Scale up: more expensive than scaling out.

Scale out: more challenging for fault tolerance and software development.
Big Data Analytics Stack

- Stream Processing
- Query/Scripting Language
- Machine Learning
- Execution Engine
- Graph Processing
- Resource Management
- Storage (File systems and Databases)
- Configuration and Synchronization Service
Hadoop Big Data Analytics Stack

File systems: HDFS (GFS), S3, ...
Databases: Hbase (BigTable)

ZooKeeper (Chubby)

YARN

MapReduce

Mahout

Pig/Hive

?
Spark Big Data Analytics Stack

Spark

Spark Stream
Spark SQL Shark
MLlib
GraphX

Spark

Mesos/YARN

File systems: HDFS (GFS), S3, ...
Databases: Hbase (BigTable)

Zookeeper (Chuubiy)
Traditional file-systems are not well-designed for large-scale data processing systems.
Traditional file-systems are not well-designed for large-scale data processing systems.

Efficiency has a higher priority than other features, e.g., directory service.
Traditional file-systems are not well-designed for large-scale data processing systems.

Efficiency has a higher priority than other features, e.g., directory service.

Massive size of data tends to store it across multiple machines in a distributed way.
Traditional file-systems are not well-designed for large-scale data processing systems.

Efficiency has a higher priority than other features, e.g., directory service.

Massive size of data tends to store it across multiple machines in a distributed way.

HDFS/GFS, Amazon S3, ...
Relational Databases Management Systems (RDMS) were not designed to be distributed.
- Relational Databases Management Systems (RDMS) were not designed to be distributed.

- NoSQL databases relax one or more of the ACID properties: BASE
Relational Databases Management Systems (RDMS) were not designed to be distributed.

NoSQL databases relax one or more of the ACID properties: BASE

Different data models: key/value, column-family, graph, document.
Relational Databases Management Systems (RDMS) were not designed to be distributed.

NoSQL databases relax one or more of the ACID properties: BASE

Different data models: key/value, column-family, graph, document.

Hbase/BigTable, Dynamo, Scalaris, Cassandra, MongoDB, Voldemort, Riak, Neo4J, ...
Different frameworks require different computing resources.
Different frameworks require different computing resources.

Large organizations need the ability to share data and resources between multiple frameworks.
Different frameworks require different **computing resources**.

Large organizations need the ability to **share data and resources** between multiple frameworks.

Resource management share resources in a cluster between **multiple frameworks** while providing resource **isolation**.
Different frameworks require different computing resources.

Large organizations need the ability to share data and resources between multiple frameworks.

Resource management share resources in a cluster between multiple frameworks while providing resource isolation.

Mesos, YARN, Quincy, ...
Scalable and fault tolerance parallel data processing on clusters of unreliable machines.
Big Data - Execution Engine

- **Scalable** and **fault tolerance** parallel data processing on clusters of unreliable machines.

- **Data-parallel programming model** for clusters of commodity machines.
- **Scalable** and fault tolerance parallel data processing on clusters of unreliable machines.

- Data-parallel **programming model** for clusters of commodity machines.

- MapReduce, Spark, Stratosphere, Dryad, Hyracks, ...
Low-level programming of execution engines, e.g., MapReduce, is not easy for end users.
Low-level programming of execution engines, e.g., MapReduce, is not easy for end users.

Need high-level language to improve the query capabilities of execution engines.
- **Low-level** programming of execution engines, e.g., MapReduce, is not easy for end users.

- Need **high-level** language to improve the query capabilities of execution engines.

- It translates **user-defined** functions to **low-level** API of the execution engines.
Low-level programming of execution engines, e.g., MapReduce, is not easy for end users.

Need high-level language to improve the query capabilities of execution engines.

It translates user-defined functions to low-level API of the execution engines.

Pig, Hive, Shark, Meteor, DryadLINQ, SCOPE, ...
Providing users with fresh and low latency results.
Providing users with **fresh** and **low latency** results.

Database Management Systems (DBMS) vs. Data Stream Management Systems (DSMS)
Big Data - Stream Processing

- Providing users with fresh and low latency results.
- Database Management Systems (DBMS) vs. Data Stream Management Systems (DSMS)

- Storm, S4, SEEP, D-Stream, Naiad, ...
Many problems are expressed using graphs: sparse computational dependencies, and multiple iterations to converge.
Many problems are expressed using graphs: sparse computational dependencies, and multiple iterations to converge.

Data-parallel frameworks, such as MapReduce, are not ideal for these problems: slow
Many problems are expressed using graphs: sparse computational dependencies, and multiple iterations to converge.

Data-parallel frameworks, such as MapReduce, are not ideal for these problems: slow.

Graph processing frameworks are optimized for graph-based problems.
Many problems are expressed using graphs: sparse computational dependencies, and multiple iterations to converge.

Data-parallel frameworks, such as MapReduce, are not ideal for these problems: slow.

Graph processing frameworks are optimized for graph-based problems.

Pregel, Giraph, GraphX, GraphLab, PowerGraph, GraphChi, ...
Implementing and consuming machine learning techniques at scale are difficult tasks for developers and end users.
Implementing and consuming machine learning techniques at scale are difficult tasks for developers and end users.

There exist platforms that address it by providing scalable machine-learning and data mining libraries.
Implementing and consuming machine learning techniques at scale are difficult tasks for developers and end users.

There exist platforms that address it by providing scalable machine-learning and data mining libraries.

Mahout, MLBase, SystemML, Ricardo, Presto, ...
A means to synchronize distributed applications accesses to shared resources.
A means to synchronize distributed applications accesses to shared resources.

Allows distributed processes to coordinate with each other.
A means to synchronize distributed applications accesses to shared resources.

Allows distributed processes to coordinate with each other.

Zookeeper, Chubby, ...
Outline

- Introduction to HDFS
- Data processing with MapReduce
- Introduction to Scala
- Data exploration using Spark
- Stream processing with Spark Streaming
- Graph analytics with GraphX
What is Filesystem?

- Controls how data is stored in and retrieved from disk.
What is Filesystem?

- Controls how data is **stored** in and **retrieved** from disk.
Distributed Filesystems

- When data *outgrows* the storage capacity of a *single* machine: *partition* it across a *number of separate* machines.

- Distributed filesystems: manage the storage across a network of machines.
HDFS

- Hadoop Distributed FileSystem
- Appears as a single disk
- Runs on top of a native filesystem, e.g., ext3
- Fault tolerant: can handle disk crashes, machine crashes, ...
- Based on Google’s filesystem GFS
HDFS is Good for ...

- Storing large files
 - Terabytes, Petabytes, etc...
 - 100MB or more per file.

- Streaming data access
 - Data is written once and read many times.
 - Optimized for batch reads rather than random reads.

- Cheap commodity hardware
 - No need for super-computers, use less reliable commodity hardware.
HDFS is Not Good for ...

- **Low-latency reads**
 - High-throughput rather than low latency for small chunks of data.
 - HBase addresses this issue.

- **Large amount of small files**
 - Better for millions of large files instead of billions of small files.

- **Multiple writers**
 - Single writer per file.
 - Writes only at the end of file, no-support for arbitrary offset.
HDFS Daemons (1/2)

- HDFS cluster is managed by three types of processes.

 - Namenode
 - Manages the filesystem, e.g., namespace, meta-data, and file blocks
 - Metadata is stored in memory.

 - Datanode
 - Stores and retrieves data blocks
 - Reports to Namenode
 - Runs on many machines

 - Secondary Namenode
 - Only for checkpointing.
 - Not a backup for Namenode
HDFS Daemons (1/2)

- HDFS cluster is managed by **three** types of processes.

- **Namenode**
 - Manages the **filesystem**, e.g., namespace, meta-data, and file blocks
 - Metadata is stored in **memory**.
HDFS Daemons (1/2)

- HDFS cluster is managed by three types of processes.

- Namenode
 - Manages the filesystem, e.g., namespace, meta-data, and file blocks
 - Metadata is stored in memory.

- Datanode
 - Stores and retrieves data blocks
 - Reports to Namenode
 - Runs on many machines
HDFS Daemons (1/2)

- HDFS cluster is manager by three types of processes.

- Namenode
 - Manages the filesystem, e.g., namespace, meta-data, and file blocks
 - Metadata is stored in memory.

- Datanode
 - Stores and retrieves data blocks
 - Reports to Namenode
 - Runs on many machines

- Secondary Namenode
 - Only for checkpointing.
 - Not a backup for Namenode
HDFS Daemons (2/2)

Management node

Secondary Namenode

Namenode

Node 1

Node 2

Node n
Files and Blocks (1/2)

- Files are split into blocks.

- Blocks
 - Single unit of storage: a contiguous piece of information on a disk.
 - Transparent to user.
 - Managed by Namenode, stored by Datanode.
 - Blocks are traditionally either 64MB or 128MB: default is 64MB.
Same block is **replicated** on multiple machines: default is 3

- Replica placements are **rack aware**.
- **1st** replica on the local rack.
- **2nd** replica on the local rack but different machine.
- **3rd** replica on the different rack.

Namenode determines replica placement.
HDFS Client

- **Client** interacts with **Namenode**
 - To **update** the Namenode namespace.
 - To **retrieve block locations** for writing and reading.

- **Client** interacts directly with **Datanode**
 - To **read** and **write data**.

- **Namenode** does **not** directly write or read data.
1. Create a new file in the Namenode’s Namespace; calculate block topology.

2, 3, 4. Stream data to the first, second and third node.

5, 6, 7. Success/failure acknowledgment.
1. Retrieve **block locations**.

2, 3. **Read blocks** to re-assemble the file.
For fast access Namenode keeps all block metadata in-memory.
 • Will work well for clusters of 100 machines.

Changing block size will affect how much space a cluster can host.
 • 64MB to 128MB will reduce the number of blocks and increase the space that Namenode can support.
HDFS Federation

- **Hadoop 2+**
- Each Namenode will host part of the blocks.
- A **Block Pool** is a set of blocks that belong to a single namespace.
- Support for **1000+** machine clusters.
Namenode Fault-Tolerance (1/2)

- Namenode is a **single point of failure**.

- If Namenode crashes then cluster is **down**.
Namenode Fault-Tolerance (1/2)

- Namenode is a **single point of failure**.

- If Namenode crashes then cluster is **down**.

- Secondary Namenode periodically merges the namespace **image** and **log** and a **persistent** record of it written to disk (**checkpointing**).

- But, the state of the **secondary Namenode lags** that of the **primary**: does **not** provide high-availability of the filesystem.
Namenode Fault-Tolerance (2/2)

- High availability Namenode.
 - Hadoop 2+
 - Active standby is always running and takes over in case main Namenode fails.
HDFS Installation and Shell
HDFS Installation

- Three options
 - Local (Standalone) Mode
 - Pseudo-Distributed Mode
 - Fully-Distributed Mode
Installation - Local

- Default configuration after the download.
- Executes as a single Java process.
- Works directly with local filesystem.
- Useful for debugging.
Installation - Pseudo-Distributed (1/6)

- Still runs on a single node.

- Each daemon runs in its own Java process.
 - Namenode
 - Secondary Namenode
 - Datanode

- Configuration files:
 - hadoop-env.sh
 - core-site.xml
 - hdfs-site.xml
Specify environment variables in `hadoop-env.sh`

```bash
export JAVA_HOME=/opt/jdk1.7.0_51
```
Specify location of **Namenode** in `core-site.sh`

```xml
<property>
  <name>fs.defaultFS</name>
  <value>hdfs://localhost:8020</value>
  <description>NameNode URI</description>
</property>
```
Configurations of Namenode in `hdfs-site.sh`

- **Path** on the local filesystem where the Namnode stores the namespace and transaction logs persistently.

```
<property>
  <name>dfs.namenode.name.dir</name>
  <value>/opt/hadoop-2.2.0/hdfs/namenode</value>
  <description>description...</description>
</property>
```
Configurations of Secondary Namenode in `hdfs-site.sh`

Path on the local filesystem where the Secondary Namenode stores the temporary images to merge.

```xml
<property>
  <name>dfs.namenode.checkpoint.dir</name>
  <value>/opt/hadoop-2.2.0/hdfs/secondary</value>
  <description>description...</description>
</property>
```
▶ Configurations of Datanode in **hdfs-site.sh**

▶ Comma separated list of **paths** on the local filesystem of a **Datanode** where it should store its blocks.

```xml
<property>
  <name>dfs.datanode.data.dir</name>
  <value>/opt/hadoop-2.2.0/hdfs/datanode</value>
  <description>description...</description>
</property>
```
Start HDFS and Test

▶ **Format** the Namenode directory (do this only once, the *first time*).

```bash
hdfs namenode -format
```

▶ Start the Namenode, Secondary namenode and Datanode daemons.

```bash
hadoop-daemon.sh start namenode
hadoop-daemon.sh start secondarynamenode
hadoop-daemon.sh start datanode
jps
```

▶ Verify the daemons are running:

- Namenode: `http://localhost:50070`
- Secondary Namenode: `http://localhost:50090`
- Datanode: `http://localhost:50075`
Start HDFS and Test

- Format the Namenode directory (do this only once, the first time).

 hdfs namenode -format

- Start the Namenode, Secondary namenode and Datanode daemons.

 hadoop-daemon.sh start namenode
 hadoop-daemon.sh start secondarynamenode
 hadoop-daemon.sh start datanode
 jps

Verify the daemons are running:
- Namenode: http://localhost:50070
- Secondary Namenode: http://localhost:50090
- Datanode: http://localhost:50075
Start HDFS and Test

- **Format** the Namenode directory (do this only once, the *first time*).

  ```
  hdfs namenode -format
  ```

- **Start** the Namenode, Secondary namenode and Datanode daemons.

  ```
  hadoop-daemon.sh start namenode
  hadoop-daemon.sh start secondarynamenode
  hadoop-daemon.sh start datanode
  jps
  ```

- **Verify** the daemons are running:
 - Namenode: http://localhost:50070
 - Secondary Namenode: http://localhost:50090
 - Datanode: http://localhost:50075
HDFS Shell

hdfs dfs -<command> -<option> <path>
hdfs dfs -<command> -<option> <path>

hdfs dfs -ls /
hdfs dfs -ls file:///home/big
hdfs dfs -ls hdfs://localhost/

hdfs dfs -cat /dir/file.txt
hdfs dfs -cp /dir/file1 /otherDir/file2
hdfs dfs -mv /dir/file1 /dir2/file2

hdfs dfs -mkdir /newDir
hdfs dfs -put file.txt /dir/file.txt # can also use copyFromLocal
hdfs dfs -get /dir/file.txt file.txt # can also use copyToLocal

hdfs dfs -rm /dir/fileToDelete
hdfs dfs -help
MapReduce
A shared nothing architecture for processing large data sets with a parallel/distributed algorithm on clusters.
A programming model: to batch process large data sets (inspired by functional programming).
MapReduce Definition

- **A programming model**: to **batch** process large data sets (inspired by **functional programming**).

- **An execution framework**: to run parallel algorithms on **clusters of commodity hardware**.
Don’t worry about parallelization, fault tolerance, data distribution, and load balancing (MapReduce takes care of these).

Hide system-level details from programmers.
Programming Model
MapReduce Dataflow

- **map** function: processes data and generates a set of intermediate key/value pairs.

- **reduce** function: merges all intermediate values associated with the same intermediate key.
Example: Word Count

Consider doing a word count of the following file using MapReduce:

```
Hello World Bye World
Hello Hadoop Goodbye Hadoop
```
Example: Word Count - map

- The **map** function reads in words one at a time and outputs `(word, 1)` for each parsed input word.

- The **map** function output is:

 - (Hello, 1)
 - (World, 1)
 - (Bye, 1)
 - (World, 1)
 - (Hello, 1)
 - (Hadoop, 1)
 - (Goodbye, 1)
 - (Hadoop, 1)
The shuffle phase between map and reduce phase creates a list of values associated with each key.

The reduce function input is:

(Bye, (1))
(Goodbye, (1))
(Hadoop, (1, 1))
(Hello, (1, 1))
(World, (1, 1))
The `reduce` function sums the numbers in the list for each key and outputs \((\text{word}, \text{count})\) pairs.

The output of the reduce function is the output of the MapReduce job:

- \((\text{Bye}, 1)\)
- \((\text{Goodbye}, 1)\)
- \((\text{Hadoop}, 2)\)
- \((\text{Hello}, 2)\)
- \((\text{World}, 2)\)
In some cases, there is significant repetition in the intermediate keys produced by each map task, and the reduce function is commutative and associative.

Machine 1:
- (Hello, 1)
- (World, 1)
- (Bye, 1)
- (World, 1)

Machine 2:
- (Hello, 1)
- (Hadoop, 1)
- (Goodbye, 1)
- (Hadoop, 1)
Users can specify an optional combiner function to merge partially data before it is sent over the network to the reduce function.

Typically the same code is used to implement both the combiner and the reduce function.

Machine 1:
- (Hello, 1)
- (World, 2)
- (Bye, 1)

Machine 2:
- (Hello, 1)
- (Hadoop, 2)
- (Goodbye, 1)
Example: Word Count - map

```java
public static class MyMap extends Mapper<...> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        String line = value.toString();
        StringTokenizer tokenizer = new StringTokenizer(line);
        while (tokenizer.hasMoreTokens()) {
            word.set(tokenizer.nextToken());
            context.write(word, one);
        }
    }
}
```
Example: Word Count - reduce

```java
public static class MyReduce extends Reducer<...> {
    public void reduce(Text key, Iterator<...> values, Context context)
        throws IOException, InterruptedException {
        int sum = 0;

        while (values.hasNext())
            sum += values.next().get();

        context.write(key, new IntWritable(sum));
    }
}
```
public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = new Job(conf, "wordcount");

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 job.setMapperClass(MyMap.class);
 job.setCombinerClass(MyReduce.class);
 job.setReducerClass(MyReduce.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);
}
start hdfs
> hadoop-daemon.sh start namenode
> hadoop-daemon.sh start datanode

make the input folder in hdfs
> hdfs dfs -mkdir -p input

copy input files from local filesystem into hdfs
> hdfs dfs -put file0 input/file0
> hdfs dfs -put file1 input/file1

> hdfs dfs -ls input/
input/file0
input/file1

> hdfs dfs -cat input/file0
Hello World Bye World

> hdfs dfs -cat input/file1
Hello Hadoop Goodbye Hadoop
Example: Word Count - Compile and Run (2/2)

> mkdir wordcount_classes

> javac -classpath
$HADOOP_HOME/share/hadoop/common/hadoop-common-2.2.0.jar:
$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.2.0.jar:
$HADOOP_HOME/share/hadoop/common/lib/commons-cli-1.2.jar
-d wordcount_classes sics/WordCount.java

> jar -cvf wordcount.jar -C wordcount_classes/ .

> hadoop jar wordcount.jar sics.WordCount input output

> hdfs dfs -ls output
output/part-00000

> hdfs dfs -cat output/part-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2
Execution Engine
The user program divides the input files into M splits.
- A typical size of a split is the size of a HDFS block (64 MB).
- Converts them to key/value pairs.

It starts up many copies of the program on a cluster of machines.

One of the copies of the program is **master**, and the rest are **workers**.

The **master** assigns works to the **workers**.
- It picks **idle** workers and assigns each one a **map** task or a **reduce** task.

A map worker reads the contents of the corresponding input splits. It parses key/value pairs out of the input data and passes each pair to the user defined map function. The intermediate key/value pairs produced by the map function are buffered in memory.

• The buffered pairs are **periodically** written to local disk.
 - They are partitioned into \(R \) regions (\(\text{hash(key)} \mod R \)).

• The locations of the buffered pairs on the local disk are passed back to the master.

• The master forwards these locations to the reduce workers.

A **reduce worker** reads the buffered data from the local disks of the map workers.

When a reduce worker has read all intermediate data, it sorts it by the intermediate keys.

MapReduce Execution (6/7)

- The reduce worker iterates over the intermediate data.
- For each unique intermediate key, it passes the key and the corresponding set of intermediate values to the user defined reduce function.
- The output of the reduce function is appended to a final output file for this reduce partition.

![MapReduce Execution Diagram]

Amir H. Payberah (Tehran Polytechnic)
When all map tasks and reduce tasks have been completed, the master wakes up the **user program**.

\[\text{J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.}\]
Fault Tolerance

- **On worker failure:**
 - Detect failure via periodic heartbeats.
 - Re-execute in-progress map and reduce tasks.
 - Re-execute completed map tasks: their output is stored on the local disk of the failed machine and is therefore inaccessible.
 - Completed reduce tasks do not need to be re-executed since their output is stored in a global filesystem.

- **On master failure:**
 - State is periodically checkpointed: a new copy of master starts from the last checkpoint state.
Scala
Scala

- **Scala**: scalable language
- A blend of **object-oriented** and **functional programming**
- Runs on the **Java Virtual Machine**
- Designed by Martin Odersky at **EPFL**
Functional Programming Languages

▶ In a restricted sense: a language that does not have mutable variables, assignments, or imperative control structures.

▶ In a wider sense: it enables the construction of programs that focus on functions.
In a restricted sense: a language that does not have mutable variables, assignments, or imperative control structures.

In a wider sense: it enables the construction of programs that focus on functions.

Functions are first-class citizens:

- Defined anywhere (including inside other functions).
- Passed as parameters to functions and returned as results.
- Operators to compose functions.
Scala Variables

- **Values**: immutable
- **Variables**: mutable

```scala
var myVar: Int = 0
val myVal: Int = 1
```

- Scala data types:
 - Boolean, Byte, Short, Char, Int, Long, Float, Double, String
var x = 30;

if (x == 10) {
 println("Value of X is 10");
} else if (x == 20) {
 println("Value of X is 20");
} else {
 println("This is else statement");
}
var a = 0
var b = 0
for (a <- 1 to 3; b <- 1 until 3) {
 println("Value of a: " + a + ", b: " + b)
}

// loop with collections
val numList = List(1, 2, 3, 4, 5, 6)
for (a <- numList) {
 println("Value of a: " + a)
}
def functionName([list of parameters]): [return type] = {
 function body
 return [expr]
}

def addInt(a: Int, b: Int): Int = {
 var sum: Int = 0
 sum = a + b
 sum
}

println("Returned Value: " + addInt(5, 7))
Anonymous Functions

▶ Lightweight syntax for defining functions.

```java
var mul = (x: Int, y: Int) => x * y
println(mul(3, 4))
```
def apply(f: Int => String, v: Int) = f(v)

def layout(x: Int) = "[" + x.toString() + "]"

println(apply(layout, 10))
Collections (1/2)

- **Array**: fixed-size sequential collection of elements of the same type

```scala
code
val t = Array("zero", "one", "two")
val b = t(0) // b = zero
```
Collections (1/2)

- **Array**: fixed-size sequential collection of elements of the same type

```scala
val t = Array("zero", "one", "two")
val b = t(0) // b = zero
```

- **List**: sequential collection of elements of the same type

```scala
val t = List("zero", "one", "two")
val b = t(0) // b = zero
```
Collections (1/2)

- **Array**: fixed-size sequential collection of elements of the same type

  ```scala
  val t = Array("zero", "one", "two")
  val b = t(0) // b = zero
  ```

- **List**: sequential collection of elements of the same type

  ```scala
  val t = List("zero", "one", "two")
  val b = t(0) // b = zero
  ```

- **Set**: sequential collection of elements of the same type without duplicates

  ```scala
  val t = Set("zero", "one", "two")
  val t.contains("zero")
  ```
Map: collection of key/value pairs

```scala
val m = Map(1 -> "sics", 2 -> "kth")
val b = m(1) // b = sics
```
Collections (2/2)

- **Map:** collection of key/value pairs

```scala
define val m = Map(1 -> "sics", 2 -> "kth")
define val b = m(1) // b = sics
```

- **Tuple:** A fixed number of items of different types together

```scala
define val t = (1, "hello")
define val b = t._1 // b = 1
define val c = t._2 // c = hello
```
Functional Combinators

- **map**: applies a function over each element in the list

```scala
val numbers = List(1, 2, 3, 4)
numbers.map(i => i * 2) // List(2, 4, 6, 8)
```

- **flatten**: it collapses one level of nested structure

```scala
List(List(1, 2), List(3, 4)).flatten // List(1, 2, 3, 4)
```

- **flatMap**: map + flatten

- **foreach**: it is like map but returns nothing
class Calculator {
 val brand: String = "HP"
 def add(m: Int, n: Int): Int = m + n
}

val calc = new Calculator
calc.add(1, 2)
println(calc.brand)
class Calculator {
 val brand: String = "HP"
 def add(m: Int, n: Int): Int = m + n
}

val calc = new Calculator
calc.add(1, 2)
println(calc.brand)

▶ A singleton is a class that can have only one instance.

object Test {
 def main(args: Array[String]) { ... }
}

Test.main(null)
Case Classes and Pattern Matching

- **Case classes** are used to store and match on the contents of a class.
- They are designed to be used with **pattern matching**.
- You can construct them **without using new**.

```scala
case class Calc(brand: String, model: String)

def calcType(calc: Calc) = calc match {
  case Calc("hp", "20B") => "financial"
  case Calc("hp", "48G") => "scientific"
  case Calc("hp", "30B") => "business"
  case _ => "Calculator of unknown type"
}

calcType(Calc("hp", "20B"))
```
Simple Build Tool (SBT)

- An open source build tool for Scala and Java projects.
- Similar to Java’s Maven or Ant.
- It is written in Scala.
SBT - Hello World!

// make dir hello and edit Hello.scala
object Hello {
 def main(args: Array[String]) {
 println("Hello world.")
 }
}

$ cd hello
$sbt compile run
Common Commands

▶ **compile**: compiles the main sources.

▶ **run <argument>**: run the main class.

▶ **package**: creates a jar file.

▶ **console**: starts the Scala interpreter.

▶ **clean**: deletes all generated files.

▶ **help <command>**: displays detailed help for the specified command.
Create a Simple Project

- Create `project` directory.

- Create `src/main/scala` directory.

- Create `build.sbt` in the project root.
A list of Scala expressions, separated by blank lines.

Located in the project’s base directory.

$ cat build.sbt
name := "hello"

version := "1.0"

scalaVersion := "2.10.4"
Add Dependencies

- Add in `build.sbt`.

- Module ID format:

 "groupID" %% "artifact" % "version" % "configuration"

```scala
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.0.0"

// multiple dependencies
libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % "1.0.0",
  "org.apache.spark" %% "spark-streaming" % "1.0.0"
)
```

- sbt uses the standard Maven2 repository by default, but you can add more resolvers.

```scala
resolvers += "Akka Repository" at "http://repo.akka.io/releases/"
```
Scala Hands-on Exercises (1/3)

▶ Declare a list of integers as a variable called `myNumbers`
Scala Hands-on Exercises (1/3)

▶ Declare a list of integers as a variable called `myNumbers`

```scala
val myNumbers = List(1, 2, 5, 4, 7, 3)
```
Scala Hands-on Exercises (1/3)

- Declare a list of integers as a variable called `myNumbers`

```scala
two myNumbers = List(1, 2, 5, 4, 7, 3)
```

- Declare a function, `pow`, that computes the second power of an Int

```scala
def pow(a: Int): Int = a * a
```
Declare a list of integers as a variable called `myNumbers`:

```scala
val myNumbers = List(1, 2, 5, 4, 7, 3)
```

Declare a function, `pow`, that computes the second power of an `Int`:

```scala
def pow(a: Int): Int = a * a
```
Apply the function to `myNumbers` using the `map` function

- myNumbers.map(x => pow(x))
- myNumbers.map(pow(_))
- myNumbers.map(pow)

Write the `pow` function inline in a `map` call, using closure notation

- myNumbers.map(x => x * x)

Iterate through `myNumbers` and print out its items

- for (i <- myNumbers) println(i)
- myNumbers.foreach(println)
Apply the function to `myNumbers` using the `map` function

```scala
myNumbers.map(x => pow(x))
// or
myNumbers.map(pow(_))
// or
myNumbers.map(pow)
```
Scala Hands-on Exercises (2/3)

- Apply the function to `myNumbers` using the `map` function

```scala
myNumbers.map(x => pow(x))
// or
myNumbers.map(pow(_))
// or
myNumbers.map(pow)
```

- Write the `pow` function inline in a `map` call, using closure notation

```scala
myNumbers.map(x => x * x)
```
Scala Hands-on Exercises (2/3)

- Apply the function to `myNumbers` using the `map` function

```scala
myNumbers.map(x => pow(x))
// or
myNumbers.map(pow(_))
// or
myNumbers.map(pow)
```

- Write the `pow` function inline in a `map` call, using closure notation

```scala
myNumbers.map(x => x * x)
```
Scala Hands-on Exercises (2/3)

▶ Apply the function to myNumbers using the map function

```scala
myNumbers.map(x => pow(x))
// or
myNumbers.map(pow(_))
// or
myNumbers.map(pow)
```

▶ Write the pow function inline in a map call, using closure notation

```scala
myNumbers.map(x => x * x)
```

▶ Iterate through myNumbers and print out its items
Scala Hands-on Exercises (2/3)

- Apply the function to `myNumbers` using the `map` function

```scala
myNumbers.map(x => pow(x))
// or
myNumbers.map(pow(_))
// or
myNumbers.map(pow)
```

- Write the `pow` function inline in a `map` call, using closure notation

```scala
myNumbers.map(x => x * x)
```

- Iterate through `myNumbers` and print out its items

```scala
for (i <- myNumbers)
    println(i)
// or
myNumbers.foreach(println)
```
Declare a list of pair of string and integers as a variable called `myList`
Declare a list of pair of string and integers as a variable called `myList`

```
val myList = List[String, Int]("a", 1), ("b", 2), ("c", 3)
```
Declare a list of pair of string and integers as a variable called `myList`

```scala
val myList = List[(String, Int)]("a", 1), ("b", 2), ("c", 3))
```

Write an inline function to increment the integer values of the list `myList`

```scala
val x = v.map { case (name, age) => age + 1 } // or
val x = v.map(i => i._2 + 1) // or
val x = v.map(_._2 + 1)
```
Scala Hands-on Exercises (3/3)

▶ Declare a list of pair of string and integers as a variable called `myList`

```scala
val myList = List[(String, Int)](("a", 1), ("b", 2), ("c", 3))
```

▶ Write an inline function to increment the integer values of the list `myList`

```scala
val x = v.map { case (name, age) => age + 1 }
// or
val x = v.map(i => i._2 + 1)
// or
val x = v.map(_._2 + 1)
```
What is Spark?

- An efficient distributed general-purpose data analysis platform.
- Focusing on ease of programming and high performance.
Motivation

- MapReduce programming model has not been designed for complex operations, e.g., data mining.

- Very expensive, i.e., always goes to disk and HDFS.
Solution

- Extends MapReduce with more operators.
- Support for advanced data flow graphs.
- In-memory and out-of-core processing.
Spark vs. Hadoop

Input → HDFS Read → Iter. 1 → HDFS Write → Iter. 2 → HDFS Read → HDFS Write → HDFS Read → ...
Spark vs. Hadoop

Input → HDFS Read → Iter. 1 → HDFS Write → Iter. 2 → HDFS Read → …

Input → Iter. 1 → Memory → Iter. 2 → Memory → …
Spark vs. Hadoop

Input

Query 1

Query 2

Query 3

Results1

Results1

Results1
Resilient Distributed Datasets (RDD) (1/2)

- A distributed memory abstraction.
Resilient Distributed Datasets (RDD) (1/2)

- A distributed memory abstraction.

- Immutable collections of objects spread across a cluster.
An RDD is divided into a number of partitions, which are atomic pieces of information.

Partitions of an RDD can be stored on different nodes of a cluster.
RDD Operators

- **Higher-order functions**: transformations and actions.

- **Transformations**: lazy operators that create new RDDs.

- **Actions**: launch a computation and return a value to the program or write data to the external storage.
Transformations vs. Actions

<table>
<thead>
<tr>
<th>Transformations</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$map(f : T \Rightarrow U)$</td>
<td>$\text{RDD}[T] \Rightarrow \text{RDD}[U]$</td>
</tr>
<tr>
<td>$filter(f : T \Rightarrow \text{Bool})$</td>
<td>$\text{RDD}[T] \Rightarrow \text{RDD}[T]$</td>
</tr>
<tr>
<td>$flatMap(f : T \Rightarrow \text{Seq}[U])$</td>
<td>$\text{RDD}[T] \Rightarrow \text{RDD}[U]$</td>
</tr>
<tr>
<td>$sample(fraction : \text{Float})$</td>
<td>$\text{RDD}[T] \Rightarrow \text{RDD}[T]$ (Deterministic sampling)</td>
</tr>
<tr>
<td>$groupByKey()$</td>
<td>$\text{RDD}[(K, V)] \Rightarrow \text{RDD}[(K, \text{Seq}[V])]$</td>
</tr>
<tr>
<td>$reduceByKey(f : (V, V) \Rightarrow V)$</td>
<td>$\text{RDD}[(K, V)] \Rightarrow \text{RDD}[(K, V)]$</td>
</tr>
<tr>
<td>$union()$</td>
<td>$(\text{RDD}[T], \text{RDD}[T]) \Rightarrow \text{RDD}[T]$</td>
</tr>
<tr>
<td>$join()$</td>
<td>$(\text{RDD}[(K, V)], \text{RDD}[(K, W)]) \Rightarrow \text{RDD}[(K, (V, W))]$</td>
</tr>
<tr>
<td>$cogroup()$</td>
<td>$(\text{RDD}[(K, V)], \text{RDD}[(K, W)]) \Rightarrow \text{RDD}[(K, (\text{Seq}[V], \text{Seq}[W]))]$</td>
</tr>
<tr>
<td>$crossProduct()$</td>
<td>$(\text{RDD}[T], \text{RDD}[U]) \Rightarrow \text{RDD}[(T, U)]$</td>
</tr>
<tr>
<td>$mapValues(f : V \Rightarrow W)$</td>
<td>$\text{RDD}[(K, V)] \Rightarrow \text{RDD}[(K, W)]$ (Preserves partitioning)</td>
</tr>
<tr>
<td>$sort(c : \text{Comparator}[K])$</td>
<td>$\text{RDD}[(K, V)] \Rightarrow \text{RDD}[(K, V)]$</td>
</tr>
<tr>
<td>$partitionBy(p : \text{Partitioner}[K])$</td>
<td>$\text{RDD}[(K, V)] \Rightarrow \text{RDD}[(K, V)]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$count()$</td>
<td>$\text{RDD}[T] \Rightarrow \text{Long}$</td>
</tr>
<tr>
<td>$collect()$</td>
<td>$\text{RDD}[T] \Rightarrow \text{Seq}[T]$</td>
</tr>
<tr>
<td>$reduce(f : (T, T) \Rightarrow T)$</td>
<td>$\text{RDD}[T] \Rightarrow T$</td>
</tr>
<tr>
<td>$lookup(k : K)$</td>
<td>$\text{RDD}[(K, V)] \Rightarrow \text{Seq}[V]$ (On hash/range partitioned RDDs)</td>
</tr>
<tr>
<td>$save(path : \text{String})$</td>
<td>Outputs RDD to a storage system, e.g., HDFS</td>
</tr>
</tbody>
</table>
RDD Transformations - Map

- All pairs are independently processed.
All pairs are **independently** processed.

```scala
// passing each element through a function.
val nums = sc.parallelize(Array(1, 2, 3))
val squares = nums.map(x => x * x)  // {1, 4, 9}
```
 RDD Transformations - GroupBy

- Pairs with identical key are grouped.
- Groups are independently processed.
RDD Transformations - GroupBy

I

Pairs with identical key are grouped.

I

Groups are independently processed.

val schools = sc.parallelize(Seq(("sics", 1), ("kth", 1), ("sics", 2)))
schools.groupByKey()
// {("sics", (1, 2)), ("kth", (1))}
schools.reduceByKey((x, y) => x + y)
// {("sics", 3), ("kth", 1)}

Amir H. Payberah (Tehran Polytechnic)

Spark

1393/10/10

117 / 171


RDD Transformations - Join

- Performs an **equi-join** on the key.
- Join candidates are independently processed.
Performs an **equi-join** on the key.

Join candidates are independently processed.

```scala
def join(list1: Seq[(String, String)], list2: Seq[(String, String)]:
  list1.join(list2)
// ("sics", ("10", "upsala"))
// ("sics", ("20", "upsala"))
// ("kth", ("50", "stockholm"))
```
Basic RDD Actions

- Return all the elements of the RDD as an array.

```scala
val nums = sc.parallelize(Array(1, 2, 3))
nums.collect() // Array(1, 2, 3)
```
Basic RDD Actions

- Return all the elements of the RDD as an array.

```scala
val nums = sc.parallelize(Array(1, 2, 3))
nums.collect() // Array(1, 2, 3)
```

- Return an array with the first n elements of the RDD.

```scala
nums.take(2) // Array(1, 2)
```
Basic RDD Actions

- Return all the elements of the RDD as an array.

```scala
val nums = sc.parallelize(Array(1, 2, 3))
nums.collect() // Array(1, 2, 3)
```

- Return an array with the first n elements of the RDD.

```scala
nums.take(2) // Array(1, 2)
```

- Return the number of elements in the RDD.

```scala
nums.count() // 3
```
Basic RDD Actions

- Return all the elements of the RDD as an array.

```scala
val nums = sc.parallelize(Array(1, 2, 3))
nums.collect() // Array(1, 2, 3)
```

- Return an array with the first n elements of the RDD.

```scala
nums.take(2) // Array(1, 2)
```

- Return the number of elements in the RDD.

```scala
nums.count() // 3
```

- Aggregate the elements of the RDD using the given function.

```scala
nums.reduce((x, y) => x + y) // 6
```
Creating RDDs

- Turn a collection into an RDD.

```scala
val a = sc.parallelize(Array(1, 2, 3))
```

- Load text file from local FS, HDFS, or S3.

```scala
val a = sc.textFile("file.txt")
val b = sc.textFile("directory//*.txt")
val c = sc.textFile("hdfs://namenode:9000/path/file")
```
SparkContext

- Main entry point to Spark functionality.
- Available in shell as variable `sc`.
- In standalone programs, you should make your own.

```scala
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

val sc = new SparkContext(master, appName, [sparkHome], [jars])
```
Read data from a text file and create an RDD named `pagecounts`.
Read data from a text file and create an RDD named `pagecounts`.

```scala
val pagecounts = sc.textFile("hamlet")
```
Spark Hands-on Exercises (1/3)

- Read data from a text file and create an RDD named `pagecounts`.

```scala
val pagecounts = sc.textFile("hamlet")
```

- Get the first 10 lines of the text file.
Spark Hands-on Exercises (1/3)

▶ Read data from a text file and create an RDD named `pagecounts`.

```scala
val pagecounts = sc.textFile("hamlet")
```

▶ Get the first 10 lines of the text file.

```scala
pagecounts.take(10).foreach(println)
```
Spark Hands-on Exercises (1/3)

▶ Read data from a text file and create an RDD named `pagecounts`.

```scala
val pagecounts = sc.textFile("hamlet")
```

▶ Get the first 10 lines of the text file.

```scala
pagecounts.take(10).foreach(println)
```

▶ Count the total records in the data set `pagecounts`.

```scala
pagecounts.count
```
Spark Hands-on Exercises (1/3)

- Read data from a text file and create an RDD named `pagecounts`.

```scala
val pagecounts = sc.textFile("hamlet")
```

- Get the first 10 lines of the text file.

```scala
pagecounts.take(10).foreach(println)
```

- Count the total records in the data set `pagecounts`.

```scala
pagecounts.count
```
Spark Hands-on Exercises (2/3)

- Filter the data set `pagecounts` and return the items that have the word `this`, and cache in the memory.

```scala
val linesWithThis = pagecounts.filter(line => line.contains("this")).cache
```

- Find the lines with the most number of words.

```scala
linesWithThis.map(line => line.split(" ").size)
```

- Count the total number of words.

```scala
val wordCounts = linesWithThis.flatMap(line => line.split(" ")).count
```

- or

```scala
val wordCounts = linesWithThis.flatMap(_.split(" ")).count
```
Filter the data set `pagecounts` and return the items that have the word `this`, and cache in the memory.

```
val linesWithThis = pagecounts.filter(line => line.contains("this")).cache
\ or
val linesWithThis = pagecounts.filter(_.contains("this")).cache
```
Filter the data set `pagecounts` and return the items that have the word `this`, and cache in the memory.

```scala
val linesWithThis = pagecounts.filter(line => line.contains("this")).cache
\ or
val linesWithThis = pagecounts.filter(_.contains("this")).cache
```

Find the lines with the most number of words.

```scala
linesWithThis.map(line => line.split(" ").size)
```

Count the total number of words.

```scala
val wordCounts = linesWithThis.flatMap(line => line.split(" ")).count
\ or
val wordCounts = linesWithThis.flatMap(_.split(" ")).count
```
Spark Hands-on Exercises (2/3)

- Filter the data set pagecounts and return the items that have the word this, and cache in the memory.

```scala
val linesWithThis = pagecounts.filter(line => line.contains("this")).cache
or
val linesWithThis = pagecounts.filter(_.contains("this")).cache
```

- Find the lines with the most number of words.

```scala
linesWithThis.map(line => line.split(" ").size)
.reduce((a, b) => if (a > b) a else b)
```
Filter the data set `pagecounts` and return the items that have the word `this`, and cache in the memory.

```scala
val linesWithThis = pagecounts.filter(line => line.contains("this")).cache
```

Find the lines with the most number of words.

```scala
linesWithThis.map(line => line.split(" ").size)
.reduce((a, b) => if (a > b) a else b)
```

Count the total number of words.

```scala
val wordCounts = linesWithThis.flatMap(line => line.split(" ")).count
```
Spark Hands-on Exercises (2/3)

- Filter the data set `pagecounts` and return the items that have the word `this`, and cache in the memory.

```scala
val linesWithThis = pagecounts.filter(line => line.contains("this")).cache
\ or
val linesWithThis = pagecounts.filter(_.contains("this")).cache
```

- Find the lines with the most number of words.

```scala
linesWithThis.map(line => line.split(" ").size)
.reduce((a, b) => if (a > b) a else b)
```

- Count the total number of words.

```scala
val wordCounts = linesWithThis.flatMap(line => line.split(" ")).count
\ or
val wordCounts = linesWithThis.flatMap(_.split(" ")).count
```
Count the number of distinct words.
Count the number of distinct words.

```scala
val uniqueWordCounts = linesWithThis.flatMap(_.split(" ")).distinct.count
```
Spark Hands-on Exercises (3/3)

- Count the number of distinct words.

```scala
val uniqueWordCounts = linesWithThis.flatMap(_.split(" ")).distinct.count
```

- Count the number of each word.
Count the number of distinct words.

```
val uniqueWordCounts = linesWithThis.flatMap(_.split(" ")).distinct.count
```

Count the number of each word.

```
val eachWordCounts = linesWithThis.flatMap(_.split(" ")).map(word => (word, 1))
  .reduceByKey((a, b) => a + b)
```
Motivation

- Many applications must process large **streams of live data** and provide results in **real-time**.

- Processing information as it **flows**, **without storing** them persistently.
Motivation

Many applications must process large streams of live data and provide results in real-time.

Processing information as it flows, without storing them persistently.

Traditional DBMSs:
- Store and index data before processing it.
- Process data only when explicitly asked by the users.
- Both aspects contrast with our requirements.
- **DBMS**: persistent data where updates are relatively infrequent.

- **DSMS**: transient data that is continuously updated.
» **DBMS**: runs queries just **once** to return a complete answer.

» **DSMS**: executes **standing queries**, which run **continuously** and provide updated answers as new data arrives.
Despite these differences, DSMSs resemble DBMSs: both process incoming data through a sequence of transformations based on SQL operators, e.g., selections, aggregates, joins.
Run a streaming computation as a series of very small, deterministic batch jobs.
Spark Streaming

- Run a streaming computation as a series of very small, deterministic batch jobs.

 - Chop up the live stream into batches of X seconds.

 - Spark treats each batch of data as RDDs and processes them using RDD operations.

 - Finally, the processed results of the RDD operations are returned in batches.
DStream

- **DStream**: sequence of RDDs representing a stream of data.
 - TCP sockets, Twitter, HDFS, Kafka, ...

![Diagram of DStream](image)
DStream

- **DStream**: sequence of RDDs representing a stream of data.
 - TCP sockets, Twitter, HDFS, Kafka, ...

```
val scc = new StreamingContext(master, appName, batchDuration,
[sparkHome], [jars])
```

Initializing Spark streaming
DStream Operations (1/2)

- **Transformations**: modify data from on DStream to a new DStream.
 - Standard RDD operations (stateless/stateful operations): map, join, ...

```
lines DStream --> lines from time 0 to 1 --> lines from time 1 to 2 --> lines from time 2 to 3 --> lines from time 3 to 4
               |                      | flatMap operation     |
               |                      |                      |
words DStream --> words from time 0 to 1 --> words from time 1 to 2 --> words from time 2 to 3 --> words from time 3 to 4
```
DStream Operations (1/2)

- **Transformations**: modify data from one DStream to a new DStream.
 - Standard RDD operations (stateless/stateful operations): map, join, ...

- **Window** operations: group all the records from a sliding window of the past time intervals into one RDD: window, reduceByAndWindow, ...

Window length: the duration of the window.

Slide interval: the interval at which the operation is performed.
Output operations: send data to external entity
- `saveAsHadoopFiles`, `foreach`, `print`, ...
DStream Operations (2/2)

- **Output operations**: send data to external entity
 - `saveAsHadoopFiles`, `foreach`, `print`, ...

- **Attaching input sources**

  ```
scc.textFileStream(directory)
scc.socketStream(hostname, port)
  ```
Example 1 (1/3)

▶ Get hash-tags from Twitter.

```scala
val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))
val tweets = TwitterUtils.createStream(ssc, None)
```

DStream: a sequence of RDD representing a stream of data

Twitter streaming API:
- `batch @ t`
- `batch @ t+1`
- `batch @ t+2`

tweets DStream: Stored in memory as an RDD (immutable, distributed)
Get hash-tags from Twitter.

```scala
val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))
val tweets = TwitterUtils.createStream(ssc, None)
val hashTags = tweets.flatMap(status => getTags(status))
```

Transformation: modify data in one DStream to create another DStream.
Get hash-tags from Twitter.

```scala
val ssc = new StreamingContext("local[2]", "Tweets", Seconds(1))
val tweets = TwitterUtils.createStream(ssc, None)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")
```
Example 2

Count frequency of words received every second.

```scala
val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(ip, port)
val words = lines.flatMap(_.split(" "))
val ones = words.map(x => (x, 1))
val freqs = ones.reduceByKey(_ + _)
```
Example 3

- Count frequency of words received in last minute.

```scala
val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream(ip, port)
val words = lines.flatMap(_.split(" "))
val ones = words.map(x => (x, 1))
val freqs = ones.reduceByKey(_ + _)
val freqs_60s = freqs.window(Seconds(60), Second(1)).reduceByKey(_ + _)
```
Stream data through a TCP connection and port 9999

```
nc -lk 9999
```
Stream data through a TCP connection and port 9999

```
nc -lk 9999
```

import the streaming libraries

```
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext._
```

```scala
val ssc = new StreamingContext("local", "NetworkWordCount", Seconds(5))
val lines = ssc.socketTextStream("127.0.0.1", 9999)
lines.print()
```
Stream data through a TCP connection and port 9999

nc -lk 9999

import the streaming libraries

```java
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext._
```
- Stream data through a TCP connection and port 9999

 `nc -lk 9999`

- Import the streaming libraries

 `import org.apache.spark.streaming.{Seconds, StreamingContext}`
 `import org.apache.spark.streaming.StreamingContext._`

- Print out the incoming stream every five seconds at port 9999
Stream data through a TCP connection and port 9999

```bash
nc -1k 9999
```

import the streaming libraries

```scala
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext._
```

Print out the incoming stream every five seconds at port 9999

```scala
val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(5))
val lines = ssc.socketTextStream("127.0.0.1", 9999)
lines.print()
```
Count the number of each word in the incoming stream every five seconds at port 9999
Count the number of each word in the incoming stream every five seconds at port 9999

```scala
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext._
val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(1))
val lines = ssc.socketTextStream("127.0.0.1", 9999)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(x => (x, 1))
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print()
```
Extend the code to generate word count over last 30 seconds of data, and repeat the computation every 10 seconds
Spark Streaming Hands-on Exercises (2/2)

- Extend the code to generate word count over last 30 seconds of data, and repeat the computation every 10 seconds

```scala
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext._

val ssc = new StreamingContext("local[2]", "NetworkWordCount", Seconds(5))
val lines = ssc.socketTextStream("127.0.0.1", 9999)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))
val windowedWordCounts = pairs
  .reduceByKeyAndWindow(_ + _, _ - _, Seconds(30), Seconds(10))
windowedWordCounts.print()
wordCounts.print()
```
Introduction

- **Graphs** provide a flexible abstraction for describing relationships between discrete objects.

- Many problems can be modeled by graphs and solved with appropriate graph algorithms.
Large graphs need large-scale processing.

A large graph either cannot fit into memory of single computer or it fits with huge cost.
Can we use platforms like MapReduce or Spark, which are based on data-parallel model, for large-scale graph processing?
The platforms that have worked well for developing parallel applications are not necessarily effective for large-scale graph problems.

Why?
Unstructured problems

- Difficult to extract parallelism based on partitioning of the data: the irregular structure of graphs.
- Limited scalability: unbalanced computational loads resulting from poorly partitioned data.
Graph Algorithms Characteristics (1/2)

- **Unstructured problems**
 - Difficult to extract **parallelism** based on partitioning of the **data**: the **irregular structure** of graphs.
 - Limited scalability: **unbalanced** computational **loads** resulting from poorly partitioned data.

- **Data-driven computations**
 - Difficult to express **parallelism** based on partitioning of **computation**: the **structure of computations** in the algorithm is not known **a priori**.
 - The **computations** are dictated by **nodes** and **links** of the graph.
Poor data locality

- The computations and data access patterns do not have much locality: the irregular structure of graphs.
Poor data locality

- The computations and data access patterns do not have much locality: the irregular structure of graphs.

High data access to computation ratio

- Graph algorithms are often based on exploring the structure of a graph to perform computations on the graph data.
- Runtime can be dominated by waiting memory fetches: low locality.
Proposed Solution

Graph-Parallel Processing
Computation typically depends on the neighbors.
Graph-Parallel Processing

- **Restricts** the types of computation.
- **New techniques** to partition and distribute graphs.
- **Exploit** graph structure.
- **Executes** graph algorithms orders-of-magnitude faster than more general data-parallel systems.

Pregel

APACHE GIRAPH

GraphLab
Data-Parallel vs. Graph-Parallel Computation

Data-Parallel

Table
Row
Row
Row
Row
Result

Graph-Parallel

Property Graph

hadoop
Spark
Pregel
GraphLab
APACHE GIRAPH
Data-Parallel vs. Graph-Parallel Computation

- **Data-parallel** computation
 - Record-centric view of data.
 - **Parallelism**: processing independent data on separate resources.

- **Graph-parallel** computation
 - Vertex-centric view of graphs.
 - **Parallelism**: partitioning graph (dependent) data across processing resources, and resolving dependencies (along edges) through iterative computation and communication.
Graph-Parallel Computation Frameworks

- Apache Giraph
- GraphLab
- Pregel
Graph-parallel computation: restricting the types of computation to achieve performance.
Graph-parallel computation: restricting the types of computation to achieve performance.

But, the same restrictions make it difficult and inefficient to express many stages in a typical graph-analytics pipeline.
Data-Parallel and Graph-Parallel Pipeline

▶ **Moving** between table and graph views of the same physical data.

▶ **Inefficient**: extensive data movement and duplication across the network and file system.
GraphX vs. Data-Parallel/Graph-Parallel Systems

Live-Journal: 69 Million Edges

- Mahout/Hadoop: 1340 seconds
- Naïve Spark: 354 seconds
- Giraph: 207 seconds
- GraphX: 68 seconds
- GraphLab: 22 seconds

Runtime (in seconds, PageRank for 10 iterations)
GraphX vs. Data-Parallel/Graph-Parallel Systems

Live-Journal: 69 Million Edges

<table>
<thead>
<tr>
<th>System</th>
<th>Runtime (in seconds, PageRank for 10 iterations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mahout/Hadoop</td>
<td>1340</td>
</tr>
<tr>
<td>Naïve Spark</td>
<td>354</td>
</tr>
<tr>
<td>Giraph</td>
<td>207</td>
</tr>
<tr>
<td>GraphX</td>
<td>68</td>
</tr>
<tr>
<td>GraphLab</td>
<td>22</td>
</tr>
</tbody>
</table>

Runtime (in seconds, PageRank for 10 iterations)

Raw Wikipedia → Hyperlinks → PageRank → Top 20 Pages

Spark Preprocess → Compute → Spark Post.

Total Runtime (in Seconds)

<table>
<thead>
<tr>
<th>System</th>
<th>Total Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark</td>
<td>1492</td>
</tr>
<tr>
<td>Giraph + Spark</td>
<td>605</td>
</tr>
<tr>
<td>GraphX</td>
<td>342</td>
</tr>
<tr>
<td>GraphLab + Spark</td>
<td>375</td>
</tr>
</tbody>
</table>
- New API that blurs the distinction between Tables and Graphs.

- New system that unifies Data-Parallel and Graph-Parallel systems.

- It is implemented on top of Spark.
Tables and Graphs are composable views of the same physical data.

Each view has its own operators that exploit the semantics of the view to achieve efficient execution.
Property Graph: represented using two Spark RDDs:
- Edge collection: VertexRDD
- Vertex collection: EdgeRDD

```scala
// VD: the type of the vertex attribute
// ED: the type of the edge attribute
class Graph[VD, ED] {
  val vertices: VertexRDD[VD]
  val edges: EdgeRDD[ED, VD]
}
```
Primitive Data Types

// Vertex collection
class VertexRDD[VD] extends RDD[(VertexId, VD)]

// Edge collection
class EdgeRDD[ED] extends RDD[Edge[ED]]
case class Edge[ED, VD](srcId: VertexId = 0, dstId: VertexId = 0,
attrib: ED = null.asInstanceOf[ED])

// Edge Triple
class EdgeTriplet[VD, ED] extends Edge[ED]

EdgeTriplet represents an edge along with the vertex attributes of its neighboring vertices.
Property Graph

Vertex Table

Edge Table
val sc: SparkContext

// Create an RDD for the vertices
val users: RDD[(Long, (String, String))] = sc.parallelize(
 Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
 (5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges
val relationships: RDD[Edge[String]] = sc.parallelize(
 Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"),
 Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")

// Build the initial Graph
val userGraph: Graph[(String, String), String] =
 Graph(users, relationships, defaultUser)
val userGraph: Graph[(String, String), String]

val facts: RDD[String] = graph.triplets.map(triplet =>
 triplet.srcAttr._1 + " is the " +
 triplet.attr + " of " + triplet.dstAttr._1)

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

facts.collect.foreach(println)
class Graph[VD, ED] {
 def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED]

 def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]

 def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]
}

- They yield new graphs with the vertex or edge properties modified by the map function.

- The graph structure is unaffected.
val newGraph = graph.mapVertices((id, attr) => mapUdf(id, attr))

val newVertices = graph.vertices.map((id, attr) => (id, mapUdf(id, attr)))
val newGraph = Graph(newVertices, graph.edges)

- Both are logically equivalent, but the second one does not preserve the structural indices and would not benefit from the GraphX system optimizations.
Map Reduce Triplets

- Map-Reduce for each vertex

\[
\text{mapF}(A \rightarrow B) \rightarrow A_1 \\
\text{mapF}(A \rightarrow C) \rightarrow A_2 \\
\text{reduceF}(A_1, A_2) \rightarrow A
\]
Map Reduce Triplets

- Map-Reduce for each vertex

\[
\text{mapF}(\overset{\leftarrow}{A} \rightarrow B) \rightarrow A_1
\]

\[
\text{mapF}(\overset{\leftarrow}{A} \rightarrow C) \rightarrow A_2
\]

\[
\text{reduceF}(A_1, A_2) \rightarrow A
\]

// what is the age of the oldest follower for each user?
val oldestFollowerAge = graph.mapReduceTriplets(
 e => Iterator((e.dstAttr, e.srcAttr)), // Map
 (a, b) => max(a, b) // Reduce
).vertices
class Graph[VD, ED] {
 // returns a new graph with all the edge directions reversed
 def reverse: Graph[VD, ED]

 // returns the graph containing only the vertices and edges that satisfy
 // the vertex predicate
 def subgraph(epred: EdgeTriplet[VD,ED] => Boolean,
 vpred: (VertexId, VD) => Boolean): Graph[VD, ED]

 // a subgraph by returning a graph that contains the vertices and edges
 // that are also found in the input graph
 def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]
}
// Build the initial Graph
val graph = Graph(users, relationships, defaultUser)

// Run Connected Components
val ccGraph = graph.connectedComponents()

// Remove missing vertices as well as the edges to connected to them
val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

// Restrict the answer to the valid subgraph
val validCCGraph = ccGraph.mask(validGraph)
Questions?